The Moderate Resolution Imaging Spectroradiometer (MODIS) is a satellite-based sensor used for earth and climate measurements. There are two MODIS sensors in Earth orbit: one on board the Terra (EOS AM) satellite, launched by NASA in 1999; and one on board the Aqua (EOS PM) satellite, launched in 2002. MODIS has now been replaced by the VIIRS,[ citation needed ] which first launched in 2011 aboard the Suomi NPP satellite.
The MODIS instruments were built by Santa Barbara Remote Sensing. [1] They capture data in 36 spectral bands ranging in wavelength from 0.4 μm to 14.4 μm and at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). Together the instruments image the entire Earth every 1 to 2 days. They are designed to provide measurements in large-scale global dynamics including changes in Earth's cloud cover, radiation budget and processes occurring in the oceans, on land, and in the lower atmosphere.
Support and calibration is provided by the MODIS characterization support team (MCST). [2]
This section needs expansion. You can help by adding to it. (September 2014) |
With its high temporal resolution although low spatial resolution, MODIS data are useful to track changes in the landscape over time. Examples of such applications are the monitoring of vegetation health by means of time-series analyses with vegetation indices, [3] long term land cover changes (e.g. to monitor deforestation rates), [4] [5] [6] [7] global snow cover trends, [8] [9] water inundation from pluvial, riverine, or sea level rise flooding in coastal areas, [10] change of water levels of major lakes such as the Aral Sea, [11] [12] and the detection and mapping of wildland fires in the United States. [13] The United States Forest Service's Remote Sensing Applications Center analyzes MODIS imagery on a continuous basis to provide information for the management and suppression of wildfires. [14]
Specifications | |
---|---|
Orbit | 705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (Aqua), Sun-synchronous, near-polar, circular |
Scan rate | 20.3 rpm, cross track |
Swath | 2330 km (cross track) by 10 km (along track at nadir) |
Dimensions | |
Telescope | 17.78 cm diam. off-axis, afocal (collimated), with intermediate field stop |
Size | 1.0 × 1.6 × 1.0 m |
Weight | 228.7 kg |
Power | 162.5 W (single orbit average) |
Data rate | 10.6 Mbit/s (peak daytime); 6.1 Mbit/s (orbital average) |
Quantization | 12 bits |
Spatial resolution | 250 m (bands 1–2) 500 m (bands 3–7) 1000 m (bands 8–36) |
Temporal resolution | 1–2 days [15] |
Design life | 6 years |
MODIS utilizes four on-board calibrators in addition to the space view in order to provide in-flight calibration: solar diffuser (SD), solar diffuser stability monitor (SDSM), spectral radiometric calibration assembly (SRCA), and a v-groove black body. [16] MODIS has used the marine optical buoy for vicarious calibration.
Band | Wavelength (nm) | Resolution (m) | Primary use |
---|---|---|---|
1 | 620–670 | 250 | Land/cloud/aerosols boundaries |
2 | 841–876 | 250 | |
3 | 459–479 | 500 | Land/cloud/aerosols properties |
4 | 545–565 | 500 | |
5 | 1230–1250 | 500 | |
6 | 1628–1652 | 500 | |
7 | 2105–2155 | 500 | |
8 | 405–420 | 1000 | Ocean color/ phytoplankton/ biogeochemistry |
9 | 438–448 | 1000 | |
10 | 483–493 | 1000 | |
11 | 526–536 | 1000 | |
12 | 546–556 | 1000 | |
13 | 662–672 | 1000 | |
14 | 673–683 | 1000 | |
15 | 743–753 | 1000 | |
16 | 862–877 | 1000 | |
17 | 890–920 | 1000 | Atmospheric water vapor |
18 | 931–941 | 1000 | |
19 | 915–965 | 1000 | |
Band | Wavelength (μm) | Resolution (m) | Primary use |
20 | 3.660–3.840 | 1000 | Surface/cloud temperature |
21 | 3.929–3.989 | 1000 | |
22 | 3.929–3.989 | 1000 | |
23 | 4.020–4.080 | 1000 | |
24 | 4.433–4.498 | 1000 | Atmospheric temperature |
25 | 4.482–4.549 | 1000 | |
26 | 1.360–1.390 | 1000 | Cirrus clouds water vapor |
27 | 6.535–6.895 | 1000 | |
28 | 7.175–7.475 | 1000 | |
29 | 8.400–8.700 | 1000 | Cloud properties |
30 | 9.580–9.880 | 1000 | Ozone |
31 | 10.780–11.280 | 1000 | Surface/cloud temperature |
32 | 11.770–12.270 | 1000 | |
33 | 13.185–13.485 | 1000 | Cloud top altitude |
34 | 13.485–13.785 | 1000 | |
35 | 13.785–14.085 | 1000 | |
36 | 14.085–14.385 | 1000 | |
The following MODIS Level 3 (L3) datasets are available from NASA, as processed by the Collection 5 software. [17]
Daily | 8-day | 16-day | 32-day | Monthly | Yearly | Grid | Platform | Description |
---|---|---|---|---|---|---|---|---|
MxD08_D3 | MxD08_E3 | — | — | MxD08_M3 | — | 1° CMG | Terra, Aqua | Aerosol, cloud water vapor, ozone |
MxD10A1 | MxD10A2 | — | — | — | — | 500 m SIN | Terra, Aqua | Snow cover |
MxD11A1 | MxD11A2 | — | — | — | — | 1000 m SIN | Terra, Aqua | Land surface temperature/emissivity |
MxD11B1 | — | — | — | — | — | 6000 m SIN | Terra, Aqua | Land surface temperature/emissivity |
MxD11C1 | MxD11C2 | — | — | MxD11C3 | — | 0.05° CMG | Terra, Aqua | Land surface temperature/emissivity |
— | — | MxD13C1 | — | MxD13C2 | — | 0.05° CMG | Terra, Aqua | Vegetation indices |
MxD14A1 | MxD14A2 | — | — | — | — | 1000 m SIN | Terra, Aqua | Thermal anomalies, fire |
— | — | — | — | MCD45A1 | — | 500 m SIN | Terra+Aqua | Burned area |
250 m SIN | 500 m SIN | 1000 m SIN | 0.05° CMG | 1° CMG | Time window | Platform | Description |
---|---|---|---|---|---|---|---|
MxD09Q1 | MxD09A1 | — | — | — | 8-day | Terra, Aqua | Surface reflectance |
— | — | — | MxD09CMG | — | Daily | Terra, Aqua | Surface reflectance |
— | MCD12Q1 | — | MCD12C1 | — | Yearly | Terra+Aqua | Land cover type |
— | MCD12Q2 | — | — | — | Yearly | Terra+Aqua | Land cover dynamics (global vegetation phenology) |
MxD13Q1 | MxD13A1 | MxD13A2 | MxD13C1 | — | 16-day | Terra, Aqua | Vegetation indices |
— | — | MxD13A3 | MxD13C2 | — | Monthly | Terra, Aqua | Vegetation indices |
— | MCD43A1 | MCD43B1 | MCD43C1 | — | 16-day | Terra+Aqua | BRDF/albedo model parameters |
— | MCD43A3 | MCD43B3 | MCD43C3 | — | 16-day | Terra+Aqua | Albedo |
— | MCD43A4 | MCD43B4 | MCD43C4 | — | 16-day | Terra+Aqua | Nadir BRDF-adjusted reflectance |
Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth and other planets. Remote sensing is used in numerous fields, including geophysics, geography, land surveying and most Earth science disciplines. It also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others.
The Landsat program is the longest-running enterprise for acquisition of satellite imagery of Earth. It is a joint NASA / USGS program. On 23 July 1972, the Earth Resources Technology Satellite was launched. This was eventually renamed to Landsat 1 in 1975. The most recent, Landsat 9, was launched on 27 September 2021.
Terra is a multi-national scientific research satellite operated by NASA in a Sun-synchronous orbit around the Earth. It takes simultaneous measurements of Earth's atmosphere, land, and water to understand how Earth is changing and to identify the consequences for life on Earth. It is the flagship of the Earth Observing System (EOS) and the first satellite of the system which was followed by Aqua and Aura. Terra was launched in 1999.
Clouds and the Earth's Radiant Energy System (CERES) is an on-going NASA climatological experiment from Earth orbit. The CERES are scientific satellite instruments, part of the NASA's Earth Observing System (EOS), designed to measure both solar-reflected and Earth-emitted radiation from the top of the atmosphere (TOA) to the Earth's surface. Cloud properties are determined using simultaneous measurements by other EOS instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Results from the CERES and other NASA missions, such as the Earth Radiation Budget Experiment (ERBE), could enable nearer to real-time tracking of Earth's energy imbalance (EEI) and better understanding of the role of clouds in global climate change.
The multi-angle imaging spectroradiometer (MISR) is a scientific instrument on the Terra satellite launched by NASA on 18 December 1999. This device is designed to measure the intensity of solar radiation reflected by the Earth system in various directions and spectral bands; it became operational in February 2000. Data generated by this sensor have been proven useful in a variety of applications including atmospheric sciences, climatology and monitoring terrestrial processes.
MOPITT is an ongoing astronomical instrument aboard NASA's Terra satellite that measures global tropospheric carbon monoxide levels. It is part of NASA's Earth Observing System (EOS), and combined with the other payload remote sensors on the Terra satellite, the spacecraft monitors the Earth's environment and climate changes. Following its construction in Canada, MOPITT was launched into Earth's orbit in 1999 and utilizes gas correlation spectroscopy to measure the presence of different gases in the troposphere. The fundamental operations occur in its optical system composed of two optical tables holding the bulk of the apparatus. Results from the MOPITT enable scientists to better understand carbon monoxide's effects on a global scale, and various studies have been conducted based on MOPITT's measurements.
Aqua is a NASA scientific research satellite in orbit around the Earth, studying the precipitation, evaporation, and cycling of water. It is the second major component of the Earth Observing System (EOS) preceded by Terra and followed by Aura.
Satellite images are images of Earth collected by imaging satellites operated by governments and businesses around the world. Satellite imaging companies sell images by licensing them to governments and businesses such as Apple Maps and Google Maps.
The normalized difference vegetation index (NDVI) is a widely-used metric for quantifying the health and density of vegetation using sensor data. It is calculated from spectrometric data at two specific bands: red and near-infrared. The spectrometric data is usually sourced from remote sensors, such as satellites.
The Advanced Very-High-Resolution Radiometer (AVHRR) instrument is a space-borne sensor that measures the reflectance of the Earth in five spectral bands that are relatively wide by today's standards. AVHRR instruments are or have been carried by the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES) and European MetOp satellites. The instrument scans several channels; two are centered on the red (0.6 micrometres) and near-infrared (0.9 micrometres) regions, a third one is located around 3.5 micrometres, and another two the thermal radiation emitted by the planet, around 11 and 12 micrometres.
TerraSAR-X, is an imaging radar Earth observation satellite, a joint venture being carried out under a public-private-partnership between the German Aerospace Center (DLR) and EADS Astrium. The exclusive commercial exploitation rights are held by the geo-information service provider Astrium. TerraSAR-X was launched on 15 June 2007 and has been in operational service since January 2008. With its twin satellite TanDEM-X, launched 21 June 2010, TerraSAR-X acquires the data basis for the WorldDEM, the worldwide and homogeneous DEM available from 2014.
An imaging spectrometer is an instrument used in hyperspectral imaging and imaging spectroscopy to acquire a spectrally-resolved image of an object or scene, usually to support analysis of the composition the object being imaged. The spectral data produced for a pixel is often referred to as a datacube due to the three-dimensional representation of the data. Two axes of the image correspond to vertical and horizontal distance and the third to wavelength. The principle of operation is the same as that of the simple spectrometer, but special care is taken to avoid optical aberrations for better image quality.
Ocean color is the branch of ocean optics that specifically studies the color of the water and information that can be gained from looking at variations in color. The color of the ocean, while mainly blue, actually varies from blue to green or even yellow, brown or red in some cases. This field of study developed alongside water remote sensing, so it is focused mainly on how color is measured by instruments.
Sentinel-2 is an Earth observation mission from the Copernicus Programme that acquires optical imagery at high spatial resolution over land and coastal waters. The mission's Sentinel-2A and Sentinel-2B satellites were joined in orbit in 2024 by a third, Sentinel-2C, and in the future by Sentinel-2D, eventually replacing the A and B satellites, respectively.
Multispectral remote sensing is the collection and analysis of reflected, emitted, or back-scattered energy from an object or an area of interest in multiple bands of regions of the electromagnetic spectrum. Subcategories of multispectral remote sensing include hyperspectral, in which hundreds of bands are collected and analyzed, and ultraspectral remote sensing where many hundreds of bands are used. The main purpose of multispectral imaging is the potential to classify the image using multispectral classification. This is a much faster method of image analysis than is possible by human interpretation.
Radiometric calibration is a general term used in science and technology for any set of calibration techniques in support of the measurement of electromagnetic radiation and atomic particle radiation. These can be for instance, in the field of radiometry or the measurement of ionising radiation radiated from a source.
Miguel Román, is the Deputy Director for Atmospheres in the Earth Sciences Division at NASA’s Goddard Space Flight Center (GSFC), an organization dedicated to advancing our understanding of the Earth's atmospheric processes, including mesoscale meteorology, precipitation, atmospheric chemistry, aerosols and clouds, radiative transfer, and related climate studies. Formerly, Dr. Román was the Chief Climate Scientist for Leidos.
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a sensor designed and manufactured by the Raytheon Company on board the polar-orbiting Suomi National Polar-orbiting Partnership, NOAA-20, and NOAA-21 weather satellites. VIIRS is one of five key instruments onboard Suomi NPP, launched on October 28, 2011. VIIRS is a whiskbroom scanner radiometer that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the visible and infrared bands of the electromagnetic spectrum.
Jeff Dozier is an American snow hydrologist, environmental scientist, researcher and academic. He is Distinguished Professor Emeritus and Founding Dean of the Bren School of Environmental Science & Management at the University of California, Santa Barbara.
Dorothy K. Hall is a scientific researcher known for her studies on snow and ice, which she studies through a combination of satellite data and direct measurements. She is a fellow of the American Geophysical Union.
ftp://ladsftp.nascom.nasa.gov/
– LAADS underlying FTP server; http://e4ftl01.cr.usgs.gov/
– Earth land surface datasets; ftp://n4ftl01u.ecs.nasa.gov/
– snow and ice datasets.Modis has 36 spectral bands