Afocal system

Last updated
Diagram of the light path in an afocal system Systeme afocal teleobjectif.svg
Diagram of the light path in an afocal system

In optics an afocal system (a system without focus) is an optical system that produces no net convergence or divergence of the beam, i.e. has an infinite effective focal length. [1] This type of system can be created with a pair of optical elements where the distance between the elements is equal to the sum of each element's focal length (d = f1+f2). A simple example of an afocal optical system is an optical telescope imaging a star, the light entering the system is at infinity and the image it forms is at infinity (the light is collimated). [2] Although the system does not alter the divergence of a collimated beam, it does alter the width of the beam, increasing magnification. The magnification of such a telescope is given by

Afocal systems are used in laser optics, for instance as beam expanders, Infrared and forward looking infrared systems, camera zoom lenses and telescopic lens attachments such as teleside converters, [3] and photography setups combining cameras and telescopes (Afocal photography).

See also

Related Research Articles

<span class="mw-page-title-main">Lens</span> Optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

<span class="mw-page-title-main">Chromatic aberration</span> Failure of a lens to focus all colors on the same point

In optics, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wavelength of light. The refractive index of most transparent materials decreases with increasing wavelength. Since the focal length of a lens depends on the refractive index, this variation in refractive index affects focusing. Chromatic aberration manifests itself as "fringes" of color along boundaries that separate dark and bright parts of the image.

The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power.

<span class="mw-page-title-main">Astrophotography</span> Imaging of astronomical objects

Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects invisible to the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time.

The angle of view is the decisive variable for the visual perception of the size or projection of the size of an object.

<span class="mw-page-title-main">Camera lens</span> Optical lens or assembly of lenses used with a camera to create images

A camera lens is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.

<span class="mw-page-title-main">Telephoto lens</span> Type of camera lens with long focal length

A telephoto lens, in photography and cinematography, is a specific type of a long-focus lens in which the physical length of the lens is shorter than the focal length. This is achieved by incorporating a special lens group known as a telephoto group that extends the light path to create a long-focus lens in a much shorter overall design. The angle of view and other effects of long-focus lenses are the same for telephoto lenses of the same specified focal length. Long-focal-length lenses are often informally referred to as telephoto lenses, although this is technically incorrect: a telephoto lens specifically incorporates the telephoto group.

<span class="mw-page-title-main">Collimated beam</span> Light all pointing in the same direction

A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffraction prevents the creation of any such beam.

<span class="mw-page-title-main">Optical telescope</span> Telescope for observations with visible light

An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Zoom lens</span> Lens with a variable focal length

A zoom lens is a mechanical assembly of lens elements for which the focal length can be varied, as opposed to a fixed-focal-length (FFL) lens.

<span class="mw-page-title-main">Catadioptric system</span> Optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as surveillance catadioptric sensors.

<span class="mw-page-title-main">Teleconverter</span>

A teleconverter is a secondary lens mounted between a camera and a photographic lens which enlarges the central part of an image obtained by the lens. For example, a 2× teleconverter for a 35 mm camera enlarges the central 12×18 mm part of an image to the size of 24×36 mm in the standard 35 mm film format.

<span class="mw-page-title-main">Infinity focus</span>

In optics and photography, infinity focus is the state where a lens or other optical system forms an image of an object an infinite distance away. This corresponds to the point of focus for parallel rays. The image is formed at the focal point of the lens.

<span class="mw-page-title-main">Telecentric lens</span> Optical lens

A telecentric lens is a special optical lens that has its entrance or exit pupil, or both, at infinity. Telecentric lenses are often used for precision optical two-dimensional measurements or reproduction and other applications that are sensitive to the image magnification or the angle of incidence of light.

In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the focal points, the principal points, and the nodal points. For ideal systems, the basic imaging properties such as image size, location, and orientation are completely determined by the locations of the cardinal points; in fact only four points are necessary: the focal points and either the principal or nodal points. The only ideal system that has been achieved in practice is the plane mirror, however the cardinal points are widely used to approximate the behavior of real optical systems. Cardinal points provide a way to analytically simplify a system with many components, allowing the imaging characteristics of the system to be approximately determined with simple calculations.

<span class="mw-page-title-main">Teleside converter</span>

A teleside converter is a secondary lens which is mounted on the front of a photographic lens to increase the effective focal length of the lens they are attached to. They are used on cameras and video cameras with non–interchangeable lenses to increase the magnification of the image. Their design is usually that of an afocal Galilean telescope that alters the width of the entering beam of light without affecting the divergence of the beam, so they can change the effective focal length 1 to 3 times without increasing focal ratio. The down side to teleside converters is they will vignette the image on the wide angle setting if used on a zoom lens. Minimum focal length without vignetting will increase inline with higher power of the teleside converter. Before vignetting appears, light fall-off will appear first and in general shooting this light fall-off may not be noticeable. The other concern is minimum working distance, so the teleside converter cannot be used below minimum working distance and it depends on both the camera and the teleside converter being used.

<span class="mw-page-title-main">Afocal photography</span> Method of photography

Afocal photography, also called afocal imaging or afocal projection is a method of photography where the camera with its lens attached is mounted over the eyepiece of another image forming system such as an optical telescope or optical microscope, with the camera lens taking the place of the human eye.

In photography, a long-focus lens is a camera lens which has a focal length that is longer than the diagonal measure of the film or sensor that receives its image. It is used to make distant objects appear magnified with magnification increasing as longer focal length lenses are used. A long-focus lens is one of three basic photographic lens types classified by relative focal length, the other two being a normal lens and a wide-angle lens. As with other types of camera lenses, the focal length is usually expressed in a millimeter value written on the lens, for example: a 500 mm lens. The most common type of long-focus lens is the telephoto lens, which incorporate a special lens group known as a telephoto group to make the physical length of the lens shorter than the focal length.

References

  1. Daniel Malacara, Zacarias Malacara, Handbook of optical design. Page 379
  2. Virendra N. Mahajan, Ray geometrical optics, page 38
  3. Rudolf Kingslake, Optics in photography, page 187