Last updated

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). [1] At 300 GHz, the corresponding wavelength is 1 mm, and at 30 Hz is 10,000 km. The wavelength of a radio wave can be anywhere from shorter than a grain of rice to longer than the radius of the Earth. Like all other electromagnetic waves, radio waves travel at the speed of light in vacuum. They are generated by electric charges undergoing acceleration, such as time varying electric currents. [2] Naturally occurring radio waves are emitted by lightning and astronomical objects.

## Contents

To prevent interference between different users, the artificial generation and use of radio waves is strictly regulated by law, coordinated by an international body called the International Telecommunications Union (ITU), which defines radio waves as "electromagnetic waves of frequencies arbitrarily lower than 3 000  GHz, propagated in space without artificial guide". [3] The radio spectrum is divided into a number of radio bands on the basis of frequency, allocated to different uses.

## Discovery and exploitation

Radio waves were first predicted by mathematical work done in 1867 by British mathematical physicist James Clerk Maxwell. [4] His mathematical theory, now called Maxwell's equations, predicted that a coupled electric and magnetic field could travel through space as an "electromagnetic wave". Maxwell proposed that light consisted of electromagnetic waves of very short wavelength. In 1887, German physicist Heinrich Hertz demonstrated the reality of Maxwell's electromagnetic waves by experimentally generating radio waves in his laboratory, [5] showing that they exhibited the same wave properties as light: standing waves, refraction, diffraction, and polarization. Italian inventor Guglielmo Marconi developed the first practical radio transmitters and receivers around 1894–1895. He received the 1909 Nobel Prize in physics for his radio work. Radio communication began to be used commercially around 1900. The modern term "radio wave" replaced the original name "Hertzian wave" around 1912.

## Generation and reception

Radio waves are radiated by electric charges when they are accelerated. They are produced artificially by time-varying electric currents, consisting of electrons flowing back and forth in a specially-shaped metal conductor called an antenna. An electronic device called a radio transmitter applies oscillating electric current to the antenna, and the antenna radiates the power as radio waves. They are received by another antenna attached to a radio receiver. When they strike the receiving antenna they push the electrons in the metal back and forth, creating tiny oscillating currents which are detected by the receiver.

## Speed, wavelength, and frequency

Radio waves in a vacuum travel at the speed of light. [6] [7] When passing through a material medium, they are slowed according to that object's permeability and permittivity. Air is thin enough that in the Earth's atmosphere radio waves travel very close to the speed of light.

The wavelength is the distance from one peak of the wave's electric field (wave's peak/crest) to the next, and is inversely proportional to the frequency of the wave. The distance a radio wave travels in one second, in a vacuum, is 299,792,458 meters (983,571,056 ft) which is the wavelength of a 1 hertz radio signal. A 1 megahertz radio signal has a wavelength of 299.8 meters (984 ft).

## Propagation characteristics

Radio waves are more widely used for communication than other electromagnetic waves mainly because of their desirable propagation properties, stemming from their large wavelength. [8] Radio waves have the ability to pass through the atmosphere, foliage, and most building materials, and by diffraction can bend around obstructions, and unlike other electromagnetic waves they tend to be scattered rather than absorbed by objects larger than their wavelength.

The study of radio propagation, how radio waves move in free space and over the surface of the Earth, is vitally important in the design of practical radio systems. Radio waves passing through different environments experience reflection, refraction, polarization, diffraction, and absorption. Different frequencies experience different combinations of these phenomena in the Earth's atmosphere, making certain radio bands more useful for specific purposes than others. Practical radio systems mainly use three different techniques of radio propagation to communicate: [9]

• Line of sight: This refers to radio waves that travel in a straight line from the transmitting antenna to the receiving antenna. It does not necessarily require a cleared sight path; at lower frequencies radio waves can pass through buildings, foliage and other obstructions. This is the only method of propagation possible at frequencies above 30 MHz. On the surface of the Earth, line of sight propagation is limited by the visual horizon to about 64 km (40 mi). This is the method used by cell phones, FM, television broadcasting and radar. By using dish antennas to transmit beams of microwaves, point-to-point microwave relay links transmit telephone and television signals over long distances up to the visual horizon. Ground stations can communicate with satellites and spacecraft billions of miles from Earth.
• Indirect propagation: Radio waves can reach points beyond the line-of-sight by diffraction and reflection. [9] Diffraction allows a radio wave to bend around obstructions such as a building edge, a vehicle, or a turn in a hall. Radio waves also partially reflect from surfaces such as walls, floors, ceilings, vehicles and the ground. These propagation methods occur in short range radio communication systems such as cell phones, cordless phones, walkie-talkies, and wireless networks. A drawback of this mode is multipath propagation , in which radio waves travel from the transmitting to the receiving antenna via multiple paths. The waves interfere, often causing fading and other reception problems.
• Ground waves: At lower frequencies below 2 MHz, in the medium wave and longwave bands, due to diffraction vertically polarized radio waves can bend over hills and mountains, and propagate beyond the horizon, traveling as surface waves which follow the contour of the Earth. This allows mediumwave and longwave broadcasting stations to have coverage areas beyond the horizon, out to hundreds of miles. As the frequency drops, the losses decrease and the achievable range increases. Military very low frequency (VLF) and extremely low frequency (ELF) communication systems can communicate over most of the Earth, and with submarines hundreds of feet underwater.
• Skywaves: At medium wave and shortwave wavelengths, radio waves reflect off conductive layers of charged particles (ions) in a part of the atmosphere called the ionosphere. So radio waves directed at an angle into the sky can return to Earth beyond the horizon; this is called "skip" or "skywave" propagation. By using multiple skips communication at intercontinental distances can be achieved. Skywave propagation is variable and dependent on atmospheric conditions; it is most reliable at night and in the winter. Widely used during the first half of the 20th century, due to its unreliability skywave communication has mostly been abandoned. Remaining uses are by military over-the-horizon (OTH) radar systems, by some automated systems, by radio amateurs, and by shortwave broadcasting stations to broadcast to other countries.

In radio communication systems, information is carried across space using radio waves. At the sending end, the information to be sent, in the form of a time-varying electrical signal, is applied to a radio transmitter. [10] The information signal can be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing data from a computer. In the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency, called the carrier wave because it serves to "carry" the information through the air. The information signal is used to modulate the carrier, altering some aspect of it, "piggybacking" the information on the carrier. The modulated carrier is amplified and applied to an antenna. The oscillating current pushes the electrons in the antenna back and forth, creating oscillating electric and magnetic fields, which radiate the energy away from the antenna as radio waves. The radio waves carry the information to the receiver location.

At the receiver, the oscillating electric and magnetic fields of the incoming radio wave push the electrons in the receiving antenna back and forth, creating a tiny oscillating voltage which is a weaker replica of the current in the transmitting antenna. [10] This voltage is applied to the radio receiver, which extracts the information signal. The receiver first uses a bandpass filter to separate the desired radio station's radio signal from all the other radio signals picked up by the antenna, then amplifies the signal so it is stronger, then finally extracts the information-bearing modulation signal in a demodulator. The recovered signal is sent to a loudspeaker or earphone to produce sound, or a television display screen to produce a visible image, or other devices. A digital data signal is applied to a computer or microprocessor, which interacts with a human user.

The radio waves from many transmitters pass through the air simultaneously without interfering with each other. They can be separated in the receiver because each transmitter's radio waves oscillate at a different rate, in other words each transmitter has a different frequency, measured in kilohertz (kHz), megahertz (MHz) or gigahertz (GHz). The bandpass filter in the receiver consists of a tuned circuit which acts like a resonator, similarly to a tuning fork. [10] It has a natural resonant frequency at which it oscillates. The resonant frequency is set equal to the frequency of the desired radio station. The oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. Radio signals at other frequencies are blocked by the tuned circuit and not passed on.

## Biological and environmental effects

Since the heating effect is in principle no different from other sources of heat, most research into possible health hazards of exposure to radio waves has focused on "nonthermal" effects; whether radio waves have any effect on tissues besides that caused by heating. Radiofrequency electromagnetic fields have been classified by the International Agency for Research on Cancer (IARC) as having "inadequate evidence" for its effects on humans and animals. [16] [17] There is weak mechanistic evidence of cancer risk via personal exposure to RF-EMF from mobile telephones. [18]

Radio waves can be shielded against by a conductive metal sheet or screen, an enclosure of sheet or screen is called a Faraday cage. A metal screen shields against radio waves as well as a solid sheet as long as the holes in the screen are smaller than about 1/20 of wavelength of the waves. [19]

## Measurement

Since radio frequency radiation has both an electric and a magnetic component, it is often convenient to express intensity of radiation field in terms of units specific to each component. The unit volts per meter (V/m) is used for the electric component, and the unit amperes per meter (A/m) is used for the magnetic component. One can speak of an electromagnetic field, and these units are used to provide information about the levels of electric and magnetic field strength at a measurement location.

Another commonly used unit for characterizing an RF electromagnetic field is power density. Power density is most accurately used when the point of measurement is far enough away from the RF emitter to be located in what is referred to as the far field zone of the radiation pattern. [20] In closer proximity to the transmitter, i.e., in the "near field" zone, the physical relationships between the electric and magnetic components of the field can be complex, and it is best to use the field strength units discussed above. Power density is measured in terms of power per unit area, for example, milliwatts per square centimeter (mW/cm2). When speaking of frequencies in the microwave range and higher, power density is usually used to express intensity since exposures that might occur would likely be in the far field zone.

## Related Research Articles

In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

A transmission medium is something that can mediate the propagation of signals for the purposes of telecommunication.

Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves travel in a direct path from the source to the receiver. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3–30 kHz, corresponding to wavelengths from 100 to 10 km, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters. Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations and for secure military communication. Since VLF waves can penetrate at least 40 meters (120 ft) into saltwater, they are used for military communication with submarines.

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometer. Frequencies immediately below MF are denoted low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

The near field and far field are regions of the electromagnetic field (EM) around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative 'near-field' behaviors dominate close to the antenna or scattering object, while electromagnetic radiation 'far-field' behaviors dominate at greater distances.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

Extremely low frequency (ELF) is the ITU designation for electromagnetic radiation with frequencies from 3 to 30 Hz, and corresponding wavelengths of 100,000 to 10,000 kilometers, respectively. In atmospheric science, an alternative definition is usually given, from 3 Hz to 3 kHz. In the related magnetosphere science, the lower frequency electromagnetic oscillations are considered to lie in the ULF range, which is thus also defined differently from the ITU radio bands.

Super high frequency (SHF) is the ITU designation for radio frequencies (RF) in the range between 3 and 30 gigahertz (GHz). This band of frequencies is also known as the centimetre band or centimetre wave as the wavelengths range from one to ten centimetres. These frequencies fall within the microwave band, so radio waves with these frequencies are called microwaves. The small wavelength of microwaves allows them to be directed in narrow beams by aperture antennas such as parabolic dishes and horn antennas, so they are used for point-to-point communication and data links and for radar. This frequency range is used for most radar transmitters, wireless LANs, satellite communication, microwave radio relay links, and numerous short range terrestrial data links. They are also used for heating in industrial microwave heating, medical diathermy, microwave hyperthermy to treat cancer, and to cook food in microwave ovens.

Wireless power transfer (WPT), wireless power transmission, wireless energy transmission (WET), or electromagnetic power transfer is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, a transmitter device, driven by electric power from a power source, generates a time-varying electromagnetic field, which transmits power across space to a receiver device, which extracts power from the field and supplies it to an electrical load. The technology of wireless power transmission can eliminate the use of the wires and batteries, thus increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.

A spark-gap transmitter is an obsolete type of radio transmitter which generates radio waves by means of an electric spark. Spark-gap transmitters were the first type of radio transmitter, and were the main type used during the wireless telegraphy or "spark" era, the first three decades of radio, from 1887 to the end of World War I. German physicist Heinrich Hertz built the first experimental spark-gap transmitters in 1887, with which he proved the existence of radio waves and studied their properties.

A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor usually fed by a balanced source or feeding a balanced load. Within this physical description there are two distinct antenna types:

Near-field electromagnetic ranging (NFER) refers to any radio technology employing the near-field properties of radio waves as a Real Time Location System (RTLS).

Radio-frequency (RF) engineering is a subset of electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or utilize signals within the radio band, the frequency range of about 20 kHz up to 300 GHz.

Non-ionizingradiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation, the movement of an electron to a higher energy state. In contrast, ionizing radiation has a higher frequency and shorter wavelength than non-ionizing radiation, and can be a serious health hazard; exposure to it can cause burns, radiation sickness, cancer, and genetic damage. Using ionizing radiation requires elaborate radiological protection measures, which in general are not required with non-ionizing radiation.

## References

1. Altgelt, CA (2005). "The World's Largest "Radio" Station" (PDF). hep.wisc.edu. High Energy Physics @ UW Madison . Retrieved 9 Jan 2019.
2. Ellingson SW (2016). Radio Systems Engineering. Cambridge University Press. pp. 16–17. ISBN   1316785165.
3. "Ch. 1: Terminology and technical characteristics - Terms and definitions". Radio Regulations (PDF). Geneva: ITU. 2016. p. 7. ISBN   9789261191214.
4. Harman PM (1998). The natural philosophy of James Clerk Maxwell. Cambridge, England: Cambridge University Press. p. 6. ISBN   0-521-00585-X.
5. Rubin, J. "Heinrich Hertz: The Discovery of Radio Waves". Juliantrubin.com. Retrieved 8 Nov 2011.
6. "Electromagnetic Frequency, Wavelength and Energy Ultra Calculator". 1728.org. 1728 Software Systems. Retrieved 15 Jan 2018.
7. "How Radio Waves Are Produced". NRAO. Archived from the original on 28 March 2014. Retrieved 15 Jan 2018.
8. Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 16–17. ISBN   1316785165.
9. Seybold JS (2005). "1.2 Modes of Propagation". Introduction to RF Propagation. John Wiley and Sons. pp. 3–10. ISBN   0471743682.
10. Brain, M (7 Dec 2000). "How Radio Works". HowStuffWorks.com. Retrieved 11 Sep 2009.
11. Kitchen R (2001). (2nd ed.). Newnes. pp.  64–65. ISBN   0750643552.
12. VanderVorst A, Rosen A, Kotsuka Y (2006). RF/Microwave Interaction with Biological Tissues. John Wiley & Sons. pp. 121–122. ISBN   0471752045.
13. Graf RF, Sheets W (2001). Build Your Own Low-power Transmitters: Projects for the Electronics Experimenter. Newnes. p. 234. ISBN   0750672447.
14. Elder JA, Cahill DF (1984). "Biological Effects of RF Radiation". Biological Effects of Radiofrequency Radiation. US EPA. pp. 5.116–5.119.
15. Hitchcock RT, Patterson RM (1995). Radio-Frequency and ELF Electromagnetic Energies: A Handbook for Health Professionals. Industrial Health and Safety Series. John Wiley & Sons. pp. 177–179. ISBN   9780471284543.
16. "IARC Classifies Radiofrequency Electromagnetic Fields as Possibly Carcinogenic to Humans" (PDF). www.iarc.fr (Press Release). WHO. 31 May 2011. Retrieved 9 Jan 2019.
17. "Agents Classified by the IARC Monographs, Volumes 1–123". monographs.iarc.fr. IARC. 9 Nov 2018. Retrieved 9 Jan 2019.
18. Baan, R; Grosse, Y; Lauby-Secretan, B; et al. (2014). "Radiofrequency Electromagnetic Fields: evaluation of cancer hazards" (PDF). monographs.iarc.fr (conference poster). IARC . Retrieved 9 Jan 2019.
19. Kimmel WD, Gerke D (2018). Electromagnetic Compatibility in Medical Equipment: A Guide for Designers and Installers. Routledge. p. 6.67. ISBN   9781351453370.
20. National Association of Broadcasters (1996). Antenna & Tower Regulation Handbook. NAB, Science and Technology Department. p. 186. ISBN   9780893242367. Archived from the original on 1 May 2018.