Last updated
X-rays are part of the electromagnetic spectrum, with wavelengths shorter than visible light. Different applications use different parts of the X-ray spectrum. X-ray applications.svg
X-rays are part of the electromagnetic spectrum, with wavelengths shorter than visible light. Different applications use different parts of the X-ray spectrum.
X-ray of human lungs Lung X-ray.jpg
X-ray of human lungs

X-rays make up X-radiation, a form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3×1016 Hz to 3×1019 Hz) and energies in the range 100 eV to 100 keV. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to as Röntgen radiation, after the German scientist Wilhelm Röntgen, who discovered it on November 8, 1895. [1] He named it X-radiation to signify an unknown type of radiation. [2] Spelling of X-ray(s) in the English language includes the variants x-ray(s), xray(s), and X ray(s). [3]

Electromagnetic radiation form of energy emitted and absorbed by charged particles, which exhibits wave-like behavior as it travels through space

In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

Wavelength spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings, and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute, its period—the time interval between beats—is half a second. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.



Pre-Röntgen observations and research

Example of a Crookes Tube, a type of discharge tube that emitted X-rays Crookes' type discharge tubes Wellcome M0015832EA.jpg
Example of a Crookes Tube, a type of discharge tube that emitted X-rays

Before their discovery in 1895, X-rays were just a type of unidentified radiation emanating from experimental discharge tubes. They were noticed by scientists investigating cathode rays produced by such tubes, which are energetic electron beams that were first observed in 1869. Many of the early Crookes tubes (invented around 1875) undoubtedly radiated X-rays, because early researchers noticed effects that were attributable to them, as detailed below. Crookes tubes created free electrons by ionization of the residual air in the tube by a high DC voltage of anywhere between a few kilovolts and 100 kV. This voltage accelerated the electrons coming from the cathode to a high enough velocity that they created X-rays when they struck the anode or the glass wall of the tube. [4]

Cathode ray stream of electrons observed in vacuum tubes

Cathode rays are streams of electrons observed in vacuum tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the cathode. They were first observed in 1869 by German physicist Julius Plücker and Johann Wilhelm Hittorf, and were named in 1876 by Eugen Goldstein Kathodenstrahlen, or cathode rays. In 1897, British physicist J. J. Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, which was later named the electron. Cathode ray tubes (CRTs) use a focused beam of electrons deflected by electric or magnetic fields to render an image on a screen.

Electron subatomic particle with negative electric charge

The electron is a subatomic particle, symbol
, whose electric charge is negative one elementary charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron has a mass that is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: they can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

Crookes tube

A Crookes tube is an early experimental electrical discharge tube, with partial vacuum, invented by English physicist William Crookes and others around 1869-1875, in which cathode rays, streams of electrons, were discovered.

The earliest experimenter thought to have (unknowingly) produced X-rays was actuary William Morgan. In 1785 he presented a paper to the Royal Society of London describing the effects of passing electrical currents through a partially evacuated glass tube, producing a glow created by X-rays. [5] This work was further explored by Humphry Davy and his assistant Michael Faraday.

William Morgan (actuary) Welsh physician, physicist and statistician

William Morgan, FRS was a British physician, physicist and statistician, who is considered the father of modern actuarial science.

Humphry Davy English chemist

Sir Humphry Davy, 1st Baronet was a Cornish chemist and inventor, who is best remembered today for isolating, using electricity, a series of elements for the first time: potassium and sodium in 1807 and calcium, strontium, barium, magnesium and boron the following year, as well as discovering the elemental nature of chlorine and iodine. He also studied the forces involved in these separations, inventing the new field of electrochemistry. In 1799 Davy experimented with nitrous oxide and was astonished at how it made him laugh, so he nicknamed it "laughing gas", and wrote about its potential anaesthetic properties in relieving pain during surgery.

Michael Faraday English scientist

Michael Faraday FRS was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic induction, diamagnetism and electrolysis.

When Stanford University physics professor Fernando Sanford created his "electric photography" he also unknowingly generated and detected X-rays. From 1886 to 1888 he had studied in the Hermann Helmholtz laboratory in Berlin, where he became familiar with the cathode rays generated in vacuum tubes when a voltage was applied across separate electrodes, as previously studied by Heinrich Hertz and Philipp Lenard. His letter of January 6, 1893 (describing his discovery as "electric photography") to The Physical Review was duly published and an article entitled Without Lens or Light, Photographs Taken With Plate and Object in Darkness appeared in the San Francisco Examiner. [6]

Stanford University Private research university in Stanford, California

Leland Stanford Junior University is a private research university in Stanford, California. Stanford is known for its academic achievements, wealth, and selectivity; it ranks as one of the world's top universities.

Fernando Sanford was an American physicist and university professor. He was one of the 22 "pioneer professors" for Stanford University.

Heinrich Hertz German physicist

Heinrich Rudolf Hertz was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism. The unit of frequency, cycle per second, was named the "Hertz" in his honor.

Starting in 1888, Philipp Lenard conducted experiments to see whether cathode rays could pass out of the Crookes tube into the air. He built a Crookes tube with a "window" in the end made of thin aluminum, facing the cathode so the cathode rays would strike it (later called a "Lenard tube"). He found that something came through, that would expose photographic plates and cause fluorescence. He measured the penetrating power of these rays through various materials. It has been suggested that at least some of these "Lenard rays" were actually X-rays. [7]

Philipp Lenard German physicist

Philipp Eduard Anton von Lenard was a Hungarian-born German physicist and the winner of the Nobel Prize for Physics in 1905 for his work on cathode rays and the discovery of many of their properties. One of his most important contributions was the experimental realization of the photoelectric effect. He discovered that the energy (speed) of the electrons ejected from a cathode depends only on the wavelength, and not the intensity of, the incident light.

In 1889 Ukrainian-born Ivan Pulyui, a lecturer in experimental physics at the Prague Polytechnic who since 1877 had been constructing various designs of gas-filled tubes to investigate their properties, published a paper on how sealed photographic plates became dark when exposed to the emanations from the tubes. [8]

Ukrainians East Slavic ethnic group native to Ukraine

Ukrainians are an East Slavic ethnic group native to Ukraine, which is by total population the seventh-largest nation in Europe and the third-largest among the Slavic peoples after the Russians and Poles. The Constitution of Ukraine applies the term 'Ukrainians' to all its citizens. The people of Ukraine have historically been known as "Rusyns (Ruthenians)", "Little Russians", and "Cossacks", among others. The connection with the Zaporozhian Cossacks especially, is emphasized in the Ukrainian national anthem, "We are, brothers, of Cossack kin". According to most dictionary definitions, a descriptive name for the "inhabitants of Ukraine" is Ukrainian or Ukrainian people.

Czech Technical University in Prague university

Czech Technical University in Prague is one of the largest universities in the Czech Republic, and is one of the oldest institutes of technology in Central Europe. It is also the oldest non-military technical university in Europe.

Gas-filled tube arrangement of electrodes in a gas within an insulating, temperature-resistant envelope

A gas-filled tube, also known as a discharge tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

Hermann von Helmholtz formulated mathematical equations for X-rays. He postulated a dispersion theory before Röntgen made his discovery and announcement. It was formed on the basis of the electromagnetic theory of light. [9] However, he did not work with actual X-rays.

In 1894 Nikola Tesla noticed damaged film in his lab that seemed to be associated with Crookes tube experiments and began investigating this radiant energy of "invisible" kinds. [10] [11] After Röntgen identified the X-ray, Tesla began making X-ray images of his own using high voltages and tubes of his own design, [12] as well as Crookes tubes.

Discovery by Röntgen

Wilhelm Rontgen WilhelmRontgen.JPG
Wilhelm Röntgen

On November 8, 1895, German physics professor Wilhelm Röntgen stumbled on X-rays while experimenting with Lenard tubes and Crookes tubes and began studying them. He wrote an initial report "On a new kind of ray: A preliminary communication" and on December 28, 1895 submitted it to Würzburg's Physical-Medical Society journal. [13] This was the first paper written on X-rays. Röntgen referred to the radiation as "X", to indicate that it was an unknown type of radiation. The name stuck, although (over Röntgen's great objections) many of his colleagues suggested calling them Röntgen rays. They are still referred to as such in many languages, including German, Hungarian, Danish, Polish, Bulgarian, Swedish, Finnish, Estonian, Russian, Japanese, Dutch, Georgian, Hebrew and Norwegian. Röntgen received the first Nobel Prize in Physics for his discovery. [14]

There are conflicting accounts of his discovery because Röntgen had his lab notes burned after his death, but this is a likely reconstruction by his biographers: [15] [16] Röntgen was investigating cathode rays from a Crookes tube which he had wrapped in black cardboard so that the visible light from the tube would not interfere, using a fluorescent screen painted with barium platinocyanide. He noticed a faint green glow from the screen, about 1 meter away. Röntgen realized some invisible rays coming from the tube were passing through the cardboard to make the screen glow. He found they could also pass through books and papers on his desk. Röntgen threw himself into investigating these unknown rays systematically. Two months after his initial discovery, he published his paper. [17]

Hand mit Ringen (Hand with Rings): print of Wilhelm Rontgen's first "medical" X-ray, of his wife's hand, taken on 22 December 1895 and presented to Ludwig Zehnder of the Physik Institut, University of Freiburg, on 1 January 1896 First medical X-ray by Wilhelm Rontgen of his wife Anna Bertha Ludwig's hand - 18951222.gif
Hand mit Ringen (Hand with Rings): print of Wilhelm Röntgen's first "medical" X-ray, of his wife's hand, taken on 22 December 1895 and presented to Ludwig Zehnder of the Physik Institut, University of Freiburg, on 1 January 1896

Röntgen discovered their medical use when he made a picture of his wife's hand on a photographic plate formed due to X-rays. The photograph of his wife's hand was the first photograph of a human body part using X-rays. When she saw the picture, she said "I have seen my death." [20]

The discovery of X-rays stimulated a veritable sensation. Röntgen's biographer Otto Glasser estimated that, in 1896 alone, as many as 49 essays and 1044 articles about the new rays were published. [21] This was probably a conservative estimate, if one considers that nearly every paper around the world extensively reported about the new discovery, with a magazine such as Science dedicating as many as 23 articles to it in that year alone. [22] Sensationalist reactions to the new discovery included publications linking the new kind of rays to occult and paranormal theories, such as telepathy. [23] [24]

Advances in radiology

Taking an X-ray image with early Crookes tube apparatus, late 1800s. The Crookes tube is visible in center. The standing man is viewing his hand with a fluoroscope screen. The seated man is taking a radiograph of his hand by placing it on a photographic plate. No precautions against radiation exposure are taken; its hazards were not known at the time. Crookes tube xray experiment.jpg
Taking an X-ray image with early Crookes tube apparatus, late 1800s. The Crookes tube is visible in center. The standing man is viewing his hand with a fluoroscope screen. The seated man is taking a radiograph of his hand by placing it on a photographic plate. No precautions against radiation exposure are taken; its hazards were not known at the time.
Surgical removal of a bullet whose location was diagnosed with X-rays (see inset) in 1897 Professor-Karl-Gustav-Lennander-in-1897-removing-a-pistol-bullet-from-the-occipital-lobe-of-the-brain-in-a-young-man-aft.jpg
Surgical removal of a bullet whose location was diagnosed with X-rays (see inset) in 1897

Röntgen immediately noticed X-rays could have medical applications. Along with his 28 December Physical-Medical Society submission he sent a letter to physicians he knew around Europe (January 1, 1896). [25] News (and the creation of "shadowgrams") spread rapidly with Scottish electrical engineer Alan Archibald Campbell-Swinton being the first after Röntgen to create an X-ray (of a hand). Through February there were 46 experimenters taking up the technique in North America alone. [25]

The first use of X-rays under clinical conditions was by John Hall-Edwards in Birmingham, England on 11 January 1896, when he radiographed a needle stuck in the hand of an associate. On February 14, 1896 Hall-Edwards was also the first to use X-rays in a surgical operation. [26] In early 1896, several weeks after Röntgen's discovery, Ivan Romanovich Tarkhanov irradiated frogs and insects with X-rays, concluding that the rays "not only photograph, but also affect the living function". [27]

The first medical X-ray made in the United States was obtained using a discharge tube of Pulyui's design. In January 1896, on reading of Röntgen's discovery, Frank Austin of Dartmouth College tested all of the discharge tubes in the physics laboratory and found that only the Pulyui tube produced X-rays. This was a result of Pulyui's inclusion of an oblique "target" of mica, used for holding samples of fluorescent material, within the tube. On 3 February 1896 Gilman Frost, professor of medicine at the college, and his brother Edwin Frost, professor of physics, exposed the wrist of Eddie McCarthy, whom Gilman had treated some weeks earlier for a fracture, to the X-rays and collected the resulting image of the broken bone on gelatin photographic plates obtained from Howard Langill, a local photographer also interested in Röntgen's work. [28]

1896 plaque published in "Nouvelle Iconographie de la Salpetriere", a medical journal. In the left a hand deformity, in the right same hand seen using radiography. The authors named the technique Rontgen photography. X-ray 1896 nouvelle iconographie de salpetriere.jpg
1896 plaque published in "Nouvelle Iconographie de la Salpetrière", a medical journal. In the left a hand deformity, in the right same hand seen using radiography. The authors named the technique Röntgen photography.

Many experimenters, including Röntgen himself in his original experiments, came up with methods to view X-ray images "live" using some form of luminescent screen. [25] Röntgen used a screen coated with barium platinocyanide. On February 5, 1896 live imaging devices were developed by both Italian scientist Enrico Salvioni (his "cryptoscope") and Professor McGie of Princeton University (his "Skiascope"), both using barium platinocyanide. American inventor Thomas Edison started research soon after Röntgen's discovery and investigated materials' ability to fluoresce when exposed to X-rays, finding that calcium tungstate was the most effective substance. In May 1896 he developed the first mass-produced live imaging device, his "Vitascope", later called the fluoroscope, which became the standard for medical X-ray examinations. [25] Edison dropped X-ray research around 1903, before the death of Clarence Madison Dally, one of his glassblowers. Dally had a habit of testing X-ray tubes on his own hands, developing a cancer in them so tenacious that both arms were amputated in a futile attempt to save his life; in 1904, he became the first known death attributed to X-ray exposure. [25] During the time the fluoroscope was being developed, Serbian American physicist Mihajlo Pupin, using a calcium tungstate screen developed by Edison, found that using a fluorescent screen decreased the exposure time it took to create a X-ray for medical imaging from an hour to a few minutes. [29] [25]

In 1901, U.S. President William McKinley was shot twice in an assassination attempt. While one bullet only grazed his sternum, another had lodged somewhere deep inside his abdomen and could not be found. A worried McKinley aide sent word to inventor Thomas Edison to rush an X-ray machine to Buffalo to find the stray bullet. It arrived but was not used. While the shooting itself had not been lethal, gangrene had developed along the path of the bullet, and McKinley died of septic shock due to bacterial infection six days later. [30]

Hazards discovered

With the widespread experimentation with x‑rays after their discovery in 1895 by scientists, physicians, and inventors came many stories of burns, hair loss, and worse in technical journals of the time. In February 1896, Professor John Daniel and Dr. William Lofland Dudley of Vanderbilt University reported hair loss after Dr. Dudley was X-rayed. A child who had been shot in the head was brought to the Vanderbilt laboratory in 1896. Before trying to find the bullet an experiment was attempted, for which Dudley "with his characteristic devotion to science" [31] [32] [33] volunteered. Daniel reported that 21 days after taking a picture of Dudley's skull (with an exposure time of one hour), he noticed a bald spot 2 inches (5.1 cm) in diameter on the part of his head nearest the X-ray tube: "A plate holder with the plates towards the side of the skull was fastened and a coin placed between the skull and the head. The tube was fastened at the other side at a distance of one-half inch from the hair." [34]

In August 1896 Dr. HD. Hawks, a graduate of Columbia College, suffered severe hand and chest burns from an x-ray demonstration. It was reported in Electrical Review and led to many other reports of problems associated with x-rays being sent in to the publication. [35] Many experimenters including Elihu Thomson at Edison's lab, William J. Morton, and Nikola Tesla also reported burns. Elihu Thomson deliberately exposed a finger to an x-ray tube over a period of time and suffered pain, swelling, and blistering. [36] Other effects were sometimes blamed for the damage including ultraviolet rays and (according to Tesla) ozone. [37] Many physicians claimed there were no effects from X-ray exposure at all. [36] On August 3, 1905 at San Francisco, California, Elizabeth Fleischman, American X-ray pioneer, died from complications as a result of her work with X-rays. [38] [39] [40]

20th century and beyond

A patient being examined with a thoracic fluoroscope in 1940, which displayed continuous moving images. This image was used to argue that radiation exposure during the X-ray procedure would be negligible. Historical X-ray nci-vol-1893-300.jpg
A patient being examined with a thoracic fluoroscope in 1940, which displayed continuous moving images. This image was used to argue that radiation exposure during the X-ray procedure would be negligible.

The many applications of X-rays immediately generated enormous interest. Workshops began making specialized versions of Crookes tubes for generating X-rays and these first-generation cold cathode or Crookes X-ray tubes were used until about 1920.

Crookes tubes were unreliable. They had to contain a small quantity of gas (invariably air) as a current will not flow in such a tube if they are fully evacuated. However, as time passed, the X-rays caused the glass to absorb the gas, causing the tube to generate "harder" X-rays until it soon stopped operating. Larger and more frequently used tubes were provided with devices for restoring the air, known as "softeners". These often took the form of a small side tube which contained a small piece of mica, a mineral that traps relatively large quantities of air within its structure. A small electrical heater heated the mica, causing it to release a small amount of air, thus restoring the tube's efficiency. However, the mica had a limited life, and the restoration process was difficult to control.

In 1904, John Ambrose Fleming invented the thermionic diode, the first kind of vacuum tube. This used a hot cathode that caused an electric current to flow in a vacuum. This idea was quickly applied to X-ray tubes, and hence heated-cathode X-ray tubes, called "Coolidge tubes", completely replaced the troublesome cold cathode tubes by about 1920.

In about 1906, the physicist Charles Barkla discovered that X-rays could be scattered by gases, and that each element had a characteristic X-ray spectrum. He won the 1917 Nobel Prize in Physics for this discovery.

In 1912, Max von Laue, Paul Knipping, and Walter Friedrich first observed the diffraction of X-rays by crystals. This discovery, along with the early work of Paul Peter Ewald, William Henry Bragg, and William Lawrence Bragg, gave birth to the field of X-ray crystallography.

The Coolidge X-ray tube was invented during the following year by William D. Coolidge. It made possible the continuous emissions of X-rays. Modern X-ray tubes are based on this design, often employing the use of rotating targets which allow for significantly higher heat dissipation than static targets, further allowing higher quantity X-ray output for use in high powered applications such as rotational CT scanners.

Chandra's image of the galaxy cluster Abell 2125 reveals a complex of several massive multimillion-degree-Celsius gas clouds in the process of merging. Abell 2125.jpg
Chandra's image of the galaxy cluster Abell 2125 reveals a complex of several massive multimillion-degree-Celsius gas clouds in the process of merging.

The use of X-rays for medical purposes (which developed into the field of radiation therapy) was pioneered by Major John Hall-Edwards in Birmingham, England. Then in 1908, he had to have his left arm amputated because of the spread of X-ray dermatitis on his arm. [41]

In 1914 Marie Curie developed radiological cars to support soldiers injured in World War I. The cars would allow for rapid X-ray imaging of wounded soldiers so battlefield surgeons could quickly and more accurately operate. [42]

From the 1920s through to the 1950s, x-ray machines were developed to assist in the fitting of shoes and were sold to commercial shoe stores. [43] [44] [45] Concerns regarding the impact of frequent or poorly controlled use were expressed in the 1950s, [46] [47] leading to the practice's eventual end that decade. [48]

The X-ray microscope was developed during the 1950s.

The Chandra X-ray Observatory, launched on July 23, 1999, has been allowing the exploration of the very violent processes in the universe which produce X-rays. Unlike visible light, which gives a relatively stable view of the universe, the X-ray universe is unstable. It features stars being torn apart by black holes, galactic collisions, and novae, and neutron stars that build up layers of plasma that then explode into space.

An X-ray laser device was proposed as part of the Reagan Administration's Strategic Defense Initiative in the 1980s, but the only test of the device (a sort of laser "blaster" or death ray, powered by a thermonuclear explosion) gave inconclusive results. For technical and political reasons, the overall project (including the X-ray laser) was de-funded (though was later revived by the second Bush Administration as National Missile Defense using different technologies).

Dog hip xray posterior view Golden Doodle dog hip xray posterior view.jpg
Dog hip xray posterior view
Phase-contrast x-ray image of spider Phase-contrast x-ray image of spider.jpg
Phase-contrast x-ray image of spider

Phase-contrast X-ray imaging refers to a variety of techniques that use phase information of a coherent x-ray beam to image soft tissues. It has become an important method for visualizing cellular and histological structures in a wide range of biological and medical studies. There are several technologies being used for x-ray phase-contrast imaging, all utilizing different principles to convert phase variations in the x-rays emerging from an object into intensity variations. [49] [50] These include propagation-based phase contrast, [51] talbot interferometry, [50] refraction-enhanced imaging, [52] and x-ray interferometry. [53] These methods provide higher contrast compared to normal absorption-contrast x-ray imaging, making it possible to see smaller details. A disadvantage is that these methods require more sophisticated equipment, such as synchrotron or microfocus x-ray sources, X-ray optics, and high resolution x-ray detectors.

Energy ranges

Soft and hard X-rays

X-rays with high photon energies (above 5–10 keV, below 0.2–0.1 nm wavelength) are called hard X-rays, while those with lower energy (and longer wavelength) are called soft X-rays. [54] Due to their penetrating ability, hard X-rays are widely used to image the inside of objects, e.g., in medical radiography and airport security. The term X-ray is metonymically used to refer to a radiographic image produced using this method, in addition to the method itself. Since the wavelengths of hard X-rays are similar to the size of atoms, they are also useful for determining crystal structures by X-ray crystallography. By contrast, soft X-rays are easily absorbed in air; the attenuation length of 600 eV (~2 nm) X-rays in water is less than 1 micrometer. [55]

Gamma rays

There is no consensus for a definition distinguishing between X-rays and gamma rays. One common practice is to distinguish between the two types of radiation based on their source: X-rays are emitted by electrons, while gamma rays are emitted by the atomic nucleus. [56] [57] [58] [59] This definition has several problems: other processes also can generate these high-energy photons, or sometimes the method of generation is not known. One common alternative is to distinguish X- and gamma radiation on the basis of wavelength (or, equivalently, frequency or photon energy), with radiation shorter than some arbitrary wavelength, such as 10−11 m (0.1 Å), defined as gamma radiation. [60] This criterion assigns a photon to an unambiguous category, but is only possible if wavelength is known. (Some measurement techniques do not distinguish between detected wavelengths.) However, these two definitions often coincide since the electromagnetic radiation emitted by X-ray tubes generally has a longer wavelength and lower photon energy than the radiation emitted by radioactive nuclei. [56] Occasionally, one term or the other is used in specific contexts due to historical precedent, based on measurement (detection) technique, or based on their intended use rather than their wavelength or source. Thus, gamma-rays generated for medical and industrial uses, for example radiotherapy, in the ranges of 6–20 MeV, can in this context also be referred to as X-rays. [61]


Ionizing radiation hazard symbol Radioactive.svg
Ionizing radiation hazard symbol

X-ray photons carry enough energy to ionize atoms and disrupt molecular bonds. This makes it a type of ionizing radiation, and therefore harmful to living tissue. A very high radiation dose over a short period of time causes radiation sickness, while lower doses can give an increased risk of radiation-induced cancer. In medical imaging this increased cancer risk is generally greatly outweighed by the benefits of the examination. The ionizing capability of X-rays can be utilized in cancer treatment to kill malignant cells using radiation therapy. It is also used for material characterization using X-ray spectroscopy.

Attenuation length of X-rays in water showing the oxygen absorption edge at 540 eV, the energy dependence of photoabsorption, as well as a leveling off at higher photon energies due to Compton scattering. The attenuation length is about four orders of magnitude longer for hard X-rays (right half) compared to soft X-rays (left half). Attenuation.svg
Attenuation length of X-rays in water showing the oxygen absorption edge at 540 eV, the energy dependence of photoabsorption, as well as a leveling off at higher photon energies due to Compton scattering. The attenuation length is about four orders of magnitude longer for hard X-rays (right half) compared to soft X-rays (left half).

Hard X-rays can traverse relatively thick objects without being much absorbed or scattered. For this reason, X-rays are widely used to image the inside of visually opaque objects. The most often seen applications are in medical radiography and airport security scanners, but similar techniques are also important in industry (e.g. industrial radiography and industrial CT scanning) and research (e.g. small animal CT). The penetration depth varies with several orders of magnitude over the X-ray spectrum. This allows the photon energy to be adjusted for the application so as to give sufficient transmission through the object and at the same time provide good contrast in the image.

X-rays have much shorter wavelengths than visible light, which makes it possible to probe structures much smaller than can be seen using a normal microscope. This property is used in X-ray microscopy to acquire high resolution images, and also in X-ray crystallography to determine the positions of atoms in crystals.

Interaction with matter

X-rays interact with matter in three main ways, through photoabsorption, Compton scattering, and Rayleigh scattering. The strength of these interactions depends on the energy of the X-rays and the elemental composition of the material, but not much on chemical properties, since the X-ray photon energy is much higher than chemical binding energies. Photoabsorption or photoelectric absorption is the dominant interaction mechanism in the soft X-ray regime and for the lower hard X-ray energies. At higher energies, Compton scattering dominates.

Photoelectric absorption

The probability of a photoelectric absorption per unit mass is approximately proportional to Z3/E3, where Z is the atomic number and E is the energy of the incident photon. [62] This rule is not valid close to inner shell electron binding energies where there are abrupt changes in interaction probability, so called absorption edges. However, the general trend of high absorption coefficients and thus short penetration depths for low photon energies and high atomic numbers is very strong. For soft tissue, photoabsorption dominates up to about 26 keV photon energy where Compton scattering takes over. For higher atomic number substances this limit is higher. The high amount of calcium (Z=20) in bones together with their high density is what makes them show up so clearly on medical radiographs.

A photoabsorbed photon transfers all its energy to the electron with which it interacts, thus ionizing the atom to which the electron was bound and producing a photoelectron that is likely to ionize more atoms in its path. An outer electron will fill the vacant electron position and produce either a characteristic x-ray or an Auger electron. These effects can be used for elemental detection through X-ray spectroscopy or Auger electron spectroscopy.

Compton scattering

Compton scattering is the predominant interaction between X-rays and soft tissue in medical imaging. [63] Compton scattering is an inelastic scattering of the X-ray photon by an outer shell electron. Part of the energy of the photon is transferred to the scattering electron, thereby ionizing the atom and increasing the wavelength of the X-ray. The scattered photon can go in any direction, but a direction similar to the original direction is more likely, especially for high-energy X-rays. The probability for different scattering angles are described by the Klein–Nishina formula. The transferred energy can be directly obtained from the scattering angle from the conservation of energy and momentum.

Rayleigh scattering

Rayleigh scattering is the dominant elastic scattering mechanism in the X-ray regime. [64] Inelastic forward scattering gives rise to the refractive index, which for X-rays is only slightly below 1. [65]


Whenever charged particles (electrons or ions) of sufficient energy hit a material, X-rays are produced.

Production by electrons

Characteristic X-ray emission lines for some common anode materials. [66] [67]
Photon energy [keV]Wavelength [nm]
Kα1 Kβ1Kα1Kβ1
W 7459.367.20.02090.0184
Mo 4217.519.60.07090.0632
Cu 298.058.910.1540.139
Ag 4722.224.90.05590.0497
Ga 319.2510.260.1340.121
In 4924.227.30.05120.455
Spectrum of the X-rays emitted by an X-ray tube with a rhodium target, operated at 60 kV. The smooth, continuous curve is due to bremsstrahlung, and the spikes are characteristic K lines for rhodium atoms. TubeSpectrum.jpg
Spectrum of the X-rays emitted by an X-ray tube with a rhodium target, operated at 60 kV. The smooth, continuous curve is due to bremsstrahlung , and the spikes are characteristic K lines for rhodium atoms.

X-rays can be generated by an X-ray tube, a vacuum tube that uses a high voltage to accelerate the electrons released by a hot cathode to a high velocity. The high velocity electrons collide with a metal target, the anode, creating the X-rays. [68] In medical X-ray tubes the target is usually tungsten or a more crack-resistant alloy of rhenium (5%) and tungsten (95%), but sometimes molybdenum for more specialized applications, such as when softer X-rays are needed as in mammography. In crystallography, a copper target is most common, with cobalt often being used when fluorescence from iron content in the sample might otherwise present a problem.

The maximum energy of the produced X-ray photon is limited by the energy of the incident electron, which is equal to the voltage on the tube times the electron charge, so an 80 kV tube cannot create X-rays with an energy greater than 80 keV. When the electrons hit the target, X-rays are created by two different atomic processes:

  1. Characteristic X-ray emission (X-ray electroluminescence): If the electron has enough energy, it can knock an orbital electron out of the inner electron shell of the target atom. After that, electrons from higher energy levels fill the vacancies, and X-ray photons are emitted. This process produces an emission spectrum of X-rays at a few discrete frequencies, sometimes referred to as spectral lines. Usually these are transitions from the upper shells to the K shell (called K lines), to the L shell (called L lines) and so on. If the transition is from 2p to 1s, it is called Kα, while if it is from 3p to 1s it is Kβ. The frequencies of these lines depend on the material of the target and are therefore called characteristic lines. The Kα line usually has greater intensity than the Kβ one and is more desirable in diffraction experiments. Thus the Kβ line is filtered out by a filter. The filter is usually made of a metal having one proton less than the anode material (e.g., Ni filter for Cu anode or Nb filter for Mo anode).
  2. Bremsstrahlung : This is radiation given off by the electrons as they are scattered by the strong electric field near the high-Z (proton number) nuclei. These X-rays have a continuous spectrum. The frequency of bremsstrahlung is limited by the energy of incident electrons.

So, the resulting output of a tube consists of a continuous bremsstrahlung spectrum falling off to zero at the tube voltage, plus several spikes at the characteristic lines. The voltages used in diagnostic X-ray tubes range from roughly 20 kV to 150 kV and thus the highest energies of the X-ray photons range from roughly 20 keV to 150 keV. [69]

Both of these X-ray production processes are inefficient, with only about one percent of the electrical energy used by the tube converted into X-rays, and thus most of the electric power consumed by the tube is released as waste heat. When producing a usable flux of X-rays, the X-ray tube must be designed to dissipate the excess heat.

A specialized source of X-rays which is becoming widely used in research is synchrotron radiation, which is generated by particle accelerators. Its unique features are X-ray outputs many orders of magnitude greater than those of X-ray tubes, wide X-ray spectra, excellent collimation, and linear polarization. [70]

Short nanosecond bursts of X-rays peaking at 15-keV in energy may be reliably produced by peeling pressure-sensitive adhesive tape from its backing in a moderate vacuum. This is likely to be the result of recombination of electrical charges produced by triboelectric charging. The intensity of X-ray triboluminescence is sufficient for it to be used as a source for X-ray imaging. [71]

Production by fast positive ions

X-rays can also be produced by fast protons or other positive ions. The proton-induced X-ray emission or particle-induced X-ray emission is widely used as an analytical procedure. For high energies, the production cross section is proportional to Z12Z2−4, where Z1 refers to the atomic number of the ion, Z2 refers to that of the target atom. [72] An overview of these cross sections is given in the same reference.

Production in lightning and laboratory discharges

X-rays are also produced in lightning accompanying terrestrial gamma-ray flashes. The underlying mechanism is the acceleration of electrons in lightning related electric fields and the subsequent production of photons through Bremsstrahlung. [73] This produces photons with energies of some few keV and several tens of MeV. [74] In laboratory discharges with a gap size of approximately 1 meter length and a peak voltage of 1 MV, X-rays with a characteristic energy of 160 keV are observed. [75] A possible explanation is the encounter of two streamers and the production of high-energy run-away electrons; [76] however, microscopic simulations have shown that the duration of electric field enhancement between two streamers is too short to produce a significantly number of run-away electrons. [77] Recently, it has been proposed that air perturbations in the vicinity of streamers can facilitate the production of run-away electrons and hence of X-rays from discharges. [78] [79]


X-ray detectors vary in shape and function depending on their purpose. Imaging detectors such as those used for radiography were originally based on photographic plates and later photographic film, but are now mostly replaced by various digital detector types such as image plates and flat panel detectors. For radiation protection direct exposure hazard is often evaluated using ionization chambers, while dosimeters are used to measure the radiation dose a person has been exposed to. X-ray spectra can be measured either by energy dispersive or wavelength dispersive spectrometers. For x-ray diffraction applications, such as x-ray crystallography, hybrid photon counting detectors are widely used. [80]

Medical uses

X-ray. X-Ray.png
A chest radiograph of a female, demonstrating a hiatal hernia Radiografia pulmones Francisca Lorca.cropped.jpg
A chest radiograph of a female, demonstrating a hiatal hernia

Since Röntgen's discovery that X-rays can identify bone structures, X-rays have been used for medical imaging. [81] The first medical use was less than a month after his paper on the subject. [28] Up to 2010, five billion medical imaging examinations had been conducted worldwide. [82] Radiation exposure from medical imaging in 2006 made up about 50% of total ionizing radiation exposure in the United States. [83]

Projectional radiographs

Plain radiograph of the right knee Knee plain X-ray.jpg
Plain radiograph of the right knee

Projectional radiography is the practice of producing two-dimensional images using x-ray radiation. Bones contain much calcium, which due to its relatively high atomic number absorbs x-rays efficiently. This reduces the amount of X-rays reaching the detector in the shadow of the bones, making them clearly visible on the radiograph. The lungs and trapped gas also show up clearly because of lower absorption compared to tissue, while differences between tissue types are harder to see.

Projectional radiographs are useful in the detection of pathology of the skeletal system as well as for detecting some disease processes in soft tissue. Some notable examples are the very common chest X-ray, which can be used to identify lung diseases such as pneumonia, lung cancer, or pulmonary edema, and the abdominal x-ray, which can detect bowel (or intestinal) obstruction, free air (from visceral perforations) and free fluid (in ascites). X-rays may also be used to detect pathology such as gallstones (which are rarely radiopaque) or kidney stones which are often (but not always) visible. Traditional plain X-rays are less useful in the imaging of soft tissues such as the brain or muscle. One area where projectional radiographs are used extensively is in evaluating how an orthopedic implant, such as a knee, hip or shoulder replacement, is situated in the body with respect to the surrounding bone. This can be assessed in two dimensions from plain radiographs, or it can be assessed in three dimensions if a technique called '2D to 3D registration' is used. This technique purportedly negates projection errors associated with evaluating implant position from plain radiographs. [84] [85]

Dental radiography is commonly used in the diagnoses of common oral problems, such as cavities.

In medical diagnostic applications, the low energy (soft) X-rays are unwanted, since they are totally absorbed by the body, increasing the radiation dose without contributing to the image. Hence, a thin metal sheet, often of aluminium, called an X-ray filter, is usually placed over the window of the X-ray tube, absorbing the low energy part in the spectrum. This is called hardening the beam since it shifts the center of the spectrum towards higher energy (or harder) x-rays.

To generate an image of the cardiovascular system, including the arteries and veins (angiography) an initial image is taken of the anatomical region of interest. A second image is then taken of the same region after an iodinated contrast agent has been injected into the blood vessels within this area. These two images are then digitally subtracted, leaving an image of only the iodinated contrast outlining the blood vessels. The radiologist or surgeon then compares the image obtained to normal anatomical images to determine whether there is any damage or blockage of the vessel.

Computed tomography

Head CT scan (transverse plane) slice -- a modern application of medical radiography Brain CT scan.jpg
Head CT scan (transverse plane) slice -– a modern application of medical radiography

Computed tomography (CT scanning) is a medical imaging modality where tomographic images or slices of specific areas of the body are obtained from a large series of two-dimensional X-ray images taken in different directions. [86] These cross-sectional images can be combined into a three-dimensional image of the inside of the body and used for diagnostic and therapeutic purposes in various medical disciplines.


Fluoroscopy is an imaging technique commonly used by physicians or radiation therapists to obtain real-time moving images of the internal structures of a patient through the use of a fluoroscope. In its simplest form, a fluoroscope consists of an X-ray source and a fluorescent screen, between which a patient is placed. However, modern fluoroscopes couple the screen to an X-ray image intensifier and CCD video camera allowing the images to be recorded and played on a monitor. This method may use a contrast material. Examples include cardiac catheterization (to examine for coronary artery blockages) and barium swallow (to examine for esophageal disorders and swallowing disorders).


The use of X-rays as a treatment is known as radiation therapy and is largely used for the management (including palliation) of cancer; it requires higher radiation doses than those received for imaging alone. X-rays beams are used for treating skin cancers using lower energy x-ray beams while higher energy beams are used for treating cancers within the body such as brain, lung, prostate, and breast. [87] [88]

Adverse effects

Abdominal radiograph of a pregnant woman, a procedure that should be performed only after proper assessment of benefit versus risk BabyXray.png
Abdominal radiograph of a pregnant woman, a procedure that should be performed only after proper assessment of benefit versus risk
Deformity of hand due to an X-ray burn. These burns are accidents. X-rays were not shielded when they were first discovered and used, and people received radiation burns. Deformity of Hand due to X-ray burns.jpg
Deformity of hand due to an X-ray burn. These burns are accidents. X-rays were not shielded when they were first discovered and used, and people received radiation burns.

Diagnostic X-rays (primarily from CT scans due to the large dose used) increase the risk of developmental problems and cancer in those exposed. [89] [90] [91] X-rays are classified as a carcinogen by both the World Health Organization's International Agency for Research on Cancer and the U.S. government. [82] [92] It is estimated that 0.4% of current cancers in the United States are due to computed tomography (CT scans) performed in the past and that this may increase to as high as 1.5-2% with 2007 rates of CT usage. [93]

Experimental and epidemiological data currently do not support the proposition that there is a threshold dose of radiation below which there is no increased risk of cancer. [94] However, this is under increasing doubt. [95] It is estimated that the additional radiation from diagnostic X-rays will increase the average person's cumulative risk of getting cancer by age 75 by 0.6–3.0%. [96] The amount of absorbed radiation depends upon the type of X-ray test and the body part involved. [97] CT and fluoroscopy entail higher doses of radiation than do plain X-rays.

To place the increased risk in perspective, a plain chest X-ray will expose a person to the same amount from background radiation that people are exposed to (depending upon location) every day over 10 days, while exposure from a dental X-ray is approximately equivalent to 1 day of environmental background radiation. [98] Each such X-ray would add less than 1 per 1,000,000 to the lifetime cancer risk. An abdominal or chest CT would be the equivalent to 2–3 years of background radiation to the whole body, or 4–5 years to the abdomen or chest, increasing the lifetime cancer risk between 1 per 1,000 to 1 per 10,000. [98] This is compared to the roughly 40% chance of a US citizen developing cancer during their lifetime. [99] For instance, the effective dose to the torso from a CT scan of the chest is about 5 mSv, and the absorbed dose is about 14 mGy. [100] A head CT scan (1.5mSv, 64mGy) [101] that is performed once with and once without contrast agent, would be equivalent to 40 years of background radiation to the head. Accurate estimation of effective doses due to CT is difficult with the estimation uncertainty range of about ±19% to ±32% for adult head scans depending upon the method used. [102]

The risk of radiation is greater to a fetus, so in pregnant patients, the benefits of the investigation (X-ray) should be balanced with the potential hazards to the fetus. [103] [104] In the US, there are an estimated 62 million CT scans performed annually, including more than 4 million on children. [97] Avoiding unnecessary X-rays (especially CT scans) reduces radiation dose and any associated cancer risk. [105]

Medical X-rays are a significant source of man-made radiation exposure. In 1987, they accounted for 58% of exposure from man-made sources in the United States. Since man-made sources accounted for only 18% of the total radiation exposure, most of which came from natural sources (82%), medical X-rays only accounted for 10% of total American radiation exposure; medical procedures as a whole (including nuclear medicine) accounted for 14% of total radiation exposure. By 2006, however, medical procedures in the United States were contributing much more ionizing radiation than was the case in the early 1980s. In 2006, medical exposure constituted nearly half of the total radiation exposure of the U.S. population from all sources. The increase is traceable to the growth in the use of medical imaging procedures, in particular computed tomography (CT), and to the growth in the use of nuclear medicine. [83] [106]

Dosage due to dental X-rays varies significantly depending on the procedure and the technology (film or digital). Depending on the procedure and the technology, a single dental X-ray of a human results in an exposure of 0.5 to 4 mrem. A full mouth series of X-rays may result in an exposure of up to 6 (digital) to 18 (film) mrem, for a yearly average of up to 40 mrem. [107] [108] [109] [110] [111] [112] [113]

Financial incentives have been shown to have a significant impact on X-ray use with doctors who are paid a separate fee for each X-ray providing more X-rays. [114]

Other uses

Other notable uses of X-rays include

Each dot, called a reflection, in this diffraction pattern forms from the constructive interference of scattered X-rays passing through a crystal. The data can be used to determine the crystalline structure. X-ray diffraction pattern 3clpro.jpg
Each dot, called a reflection, in this diffraction pattern forms from the constructive interference of scattered X-rays passing through a crystal. The data can be used to determine the crystalline structure.

X-ray crystallography in which the pattern produced by the diffraction of X-rays through the closely spaced lattice of atoms in a crystal is recorded and then analysed to reveal the nature of that lattice. In the early 1990s, experiments were done in which layers a few atoms thick of two different materials were deposited in a Thue-Morse sequence. The resulting object was found to yield X-ray diffraction patterns. [115] A related technique, fiber diffraction, was used by Rosalind Franklin to discover the double helical structure of DNA. [116] X-ray astronomy, which is an observational branch of astronomy, which deals with the study of X-ray emission from celestial objects. X-ray microscopic analysis, which uses electromagnetic radiation in the soft X-ray band to produce images of very small objects. X-ray fluorescence, a technique in which X-rays are generated within a specimen and detected. The outgoing energy of the X-ray can be used to identify the composition of the sample. Industrial radiography uses X-rays for inspection of industrial parts, particularly welds.

Using X-ray for inspection and quality control: the differences in the structures of the die and bond wires reveal the left chip to be counterfeit. Using X-ray for authentication and quality control in electronics industry.jpg
Using X-ray for inspection and quality control: the differences in the structures of the die and bond wires reveal the left chip to be counterfeit.

Authentication and quality control, X-ray is used for authentication and quality control of packaged items. Industrial CT (computed tomography) is a process which uses X-ray equipment to produce three-dimensional representations of components both externally and internally. This is accomplished through computer processing of projection images of the scanned object in many directions. Paintings are often X-rayed to reveal underdrawings and pentimenti, alterations in the course of painting or by later restorers. Many pigments such as lead white show well in radiographs. X-ray spectromicroscopy has been used to analyse the reactions of pigments in paintings. For example, in analysing colour degradation in the paintings of van Gogh. [118] Airport security luggage scanners use X-rays for inspecting the interior of luggage for security threats before loading on aircraft. Border control truck scanners and domestic police departments use X-rays for inspecting the interior of trucks.

X-ray fine art photography of needlefish by Peter Dazeley X-RayOfNeedlefish-1.jpg
X-ray fine art photography of needlefish by Peter Dazeley

X-ray art and fine art photography, artistic use of X-rays, for example the works by Stane Jagodič X-ray hair removal, a method popular in the 1920s but now banned by the FDA. [119] Shoe-fitting fluoroscopes were popularized in the 1920s, banned in the US in the 1960s, banned in the UK in the 1970s, and even later in continental Europe. Roentgen stereophotogrammetry is used to track movement of bones based on the implantation of markers X-ray photoelectron spectroscopy is a chemical analysis technique relying on the photoelectric effect, usually employed in surface science. Radiation implosion is the use of high energy X-rays generated from a fission explosion (an A-bomb) to compress nuclear fuel to the point of fusion ignition (an H-bomb).


While generally considered invisible to the human eye, in special circumstances X-rays can be visible. Brandes, in an experiment a short time after Röntgen's landmark 1895 paper, reported after dark adaptation and placing his eye close to an X-ray tube, seeing a faint "blue-gray" glow which seemed to originate within the eye itself. [120] Upon hearing this, Röntgen reviewed his record books and found he too had seen the effect. When placing an X-ray tube on the opposite side of a wooden door Röntgen had noted the same blue glow, seeming to emanate from the eye itself, but thought his observations to be spurious because he only saw the effect when he used one type of tube. Later he realized that the tube which had created the effect was the only one powerful enough to make the glow plainly visible and the experiment was thereafter readily repeatable. The knowledge that X-rays are actually faintly visible to the dark-adapted naked eye has largely been forgotten today; this is probably due to the desire not to repeat what would now be seen as a recklessly dangerous and potentially harmful experiment with ionizing radiation. It is not known what exact mechanism in the eye produces the visibility: it could be due to conventional detection (excitation of rhodopsin molecules in the retina), direct excitation of retinal nerve cells, or secondary detection via, for instance, X-ray induction of phosphorescence in the eyeball with conventional retinal detection of the secondarily produced visible light.

Though X-rays are otherwise invisible, it is possible to see the ionization of the air molecules if the intensity of the X-ray beam is high enough. The beamline from the wiggler at the ID11 at the European Synchrotron Radiation Facility is one example of such high intensity. [121]

Units of measure and exposure

The measure of X-rays ionizing ability is called the exposure:

However, the effect of ionizing radiation on matter (especially living tissue) is more closely related to the amount of energy deposited into them rather than the charge generated. This measure of energy absorbed is called the absorbed dose:

The equivalent dose is the measure of the biological effect of radiation on human tissue. For X-rays it is equal to the absorbed dose.

Ionising radiation related quantities view    talk    edit
QuantityUnitSymbolDerivationYear SI equivalence
Activity (A) becquerel Bqs−11974SI unit
curie Ci3.7 × 1010 s−119533.7×1010 Bq
rutherford Rd106 s−119461,000,000 Bq
Exposure (X) coulomb per kilogram C/kgC⋅kg−1 of air1974SI unit
röntgen R esu / 0.001293 g of air19282.58 × 10−4 C/kg
Absorbed dose (D) gray Gy J⋅kg−11974SI unit
erg per gramerg/gerg⋅g−119501.0 × 10−4 Gy
rad rad100 erg⋅g−119530.010 Gy
Dose equivalent (H) sievert SvJ⋅kg−1 × WR 1977SI unit
röntgen equivalent man rem100 erg⋅g−119710.010 Sv

See also

Related Research Articles

Radiation Waves or particles propagating through space or through a medium, carrying energy

In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:

CT scan medical imaging procedure which uses X-rays to produce cross-sectional images

A CT scan or computed tomography scan makes use of computer-processed combinations of many X-ray measurements taken from different angles to produce cross-sectional (tomographic) images of specific areas of a scanned object, allowing the user to see inside the object without cutting. The 1979 Nobel Prize in Physiology or Medicine was awarded jointly to Allan M. Cormack and Godfrey N. Hounsfield "for the development of computer assisted tomography."

Radiography imaging technique

Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical radiography and industrial radiography. Similar techniques are used in airport security . To create an image in Conventional Radiography, a beam of X-rays is produced by an X-ray generator and is projected toward the object. A certain amount of the X-rays or other radiation is absorbed by the object, dependent on the object's density and structural composition. The X-rays that pass through the object are captured behind the object by a detector. The generation of flat two dimensional images by this technique is called projectional radiography. In computed tomography an X-ray source and its associated detectors rotate around the subject which itself moves through the conical X-ray beam produced. Any given point within the subject is crossed from many directions by many different beams at different times. Information regarding attenuation of these beams is collated and subjected to computation to generate two dimensional images in three planes which can be further processed to produce a three dimensional image.

Ionizing radiation Radiation that carries enough light energy to liberate electrons from atoms or molecules

Ionizing radiation is radiation that carries sufficient energy to detach electrons from atoms or molecules, thereby ionizing them. Ionizing radiation is made up of energetic subatomic particles, ions or atoms moving at high speeds, and electromagnetic waves on the high-energy end of the electromagnetic spectrum.

X-ray generator

An X-ray generator is a device that produces X-rays. Together with an X-ray detector, it is commonly used in a variety of applications including medicine, fluorescence, electronic assembly inspection, and measurement of material thickness in manufacturing operations. In medical applications, X-ray generators are used by radiographers to acquire x-ray images of the internal structures of living organisms, and also in sterilization.

External beam radiotherapy Treatment of cancer with ionized radiation

External beam radiotherapy (EBRT) is the most common form of radiotherapy. The patient sits or lies on a couch and an external source of ionizing radiation is pointed at a particular part of the body. In contrast to brachytherapy and unsealed source radiotherapy, in which the radiation source is inside the body, external beam radiotherapy directs the radiation at the tumour from outside the body. Orthovoltage ("superficial") X-rays are used for treating skin cancer and superficial structures. Megavoltage X-rays are used to treat deep-seated tumours, whereas megavoltage electron beams are typically used to treat superficial lesions extending to a depth of approximately 5 cm. X-rays and electron beams are by far the most widely used sources for external beam radiotherapy. A small number of centers operate experimental and pilot programs employing beams of heavier particles, particularly protons, owing to the rapid dropoff in absorbed dose beneath the depth of the target.

The gray is a derived unit of ionizing radiation dose in the International System of Units (SI). It is defined as the absorption of one joule of radiation energy per kilogram of matter.

Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.

Radiation protection, also known as radiological protection, is defined by the International Atomic Energy Agency (IAEA) as "The protection of people from harmful effects of exposure to ionizing radiation, and the means for achieving this". Exposure can be from a source of radiation external to the human body or due to internal irradiation caused by the ingestion of radioactive contamination.

Fluoroscopy production of an image when X-rays strike a fluorescent screen

Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery. In its simplest form, a fluoroscope consists of an X-ray source and a fluorescent screen, between which a patient is placed. However, since the 1950s most fluoroscopes have included X-ray image intensifiers and cameras as well, to improve the image's visibility and make it available on a remote display screen. For many decades fluoroscopy tended to produce live pictures that were not recorded, but since the 1960s, as technology improved, recording and playback became the norm.

Electron beam computed tomography

Electron beam tomography (EBT) is a specific form of computed tomography (CT) in which the X-ray tube is not mechanically spun in order to rotate the source of X-ray photons. This different design was explicitly developed to better image heart structures which never stop moving, performing a complete cycle of movement with each heart beat.

X-ray tube vacuum tube that converts electrical input power into X-rays

An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast to other sources of ionizing radiation, X-rays are only produced as long as the X-ray tube is energized. X-ray tubes are also used in CT scanners, airport luggage scanners, X-ray crystallography, material and structure analysis, and for industrial inspection.

An x-ray image intensifier (XRII) is an image intensifier that converts x-rays into visible light at higher intensity than the more traditional fluorescent screens can. Such intensifiers are used in x-ray imaging systems to allow low-intensity x-rays to be converted to a conveniently bright visible light output. The device contains a low absorbency/scatter input window, typically aluminum, input fluorescent screen, photocathode, electron optics, output fluorescent screen and output window. These parts are all mounted in a high vacuum environment within glass or more recently, metal/ceramic. By its intensifying effect, It allows the viewer to more easily see the structure of the object being imaged than fluorescent screens alone, whose images are dim. The XRII requires lower absorbed doses due to more efficient conversion of x-ray quanta to visible light. This device was originally introduced in 1948.

Peak kilovoltage (kVp) refers to the maximum high voltage applied across an X-ray tube during the creation of x-rays within it. During x-ray generation, surface electrons are released from a heated cathode by thermionic emission. The applied voltage (kV) accelerates these electrons toward an anode target, ultimately producing x-rays when the electrons are stopped in the anode. Thus, the kVp corresponds to the highest kinetic energy of the electrons striking the target, and is proportional to the maximum energy of the resulting X-ray emission spectrum. In early and basic x-ray equipment, the applied voltage varies cyclically, with one, two, or more pulses per mains AC power cycle. One standard way to measure pulsating DC is its peak amplitude, hence kVp. Most modern X-ray generators apply a constant potential across the x-ray tube; in such systems, the kVp and the steady-state kV are identical.

Industrial radiography

Industrial radiography is a method of non-destructive testing where many types of manufactured components can be examined to verify the internal structure and integrity of the specimen. Industrial Radiography can be performed utilizing either X-rays or gamma rays. Both are forms of electromagnetic radiation. The difference between various forms of electromagnetic energy is related to the wavelength. X and gamma rays have the shortest wavelength and this property leads to the ability to penetrate, travel through, and exit various materials such as carbon steel and other metals.

Radiobiology is a field of clinical and basic medical sciences that involves the study of the action of ionizing radiation on living things, especially health effects of radiation. Ionizing radiation is generally harmful and potentially lethal to living things but can have health benefits in radiation therapy for the treatment of cancer and thyrotoxicosis. Its most common impact is the induction of cancer with a latent period of years or decades after exposure. High doses can cause visually dramatic radiation burns, and/or rapid fatality through acute radiation syndrome. Controlled doses are used for medical imaging and radiotherapy.

Gamma ray Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, or gamma radiation, is a penetrating electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; he had previously discovered two less penetrating types of decay radiation, which he named alpha rays and beta rays in ascending order of penetrating power.

Photostimulated luminescence (PSL) is the release of stored energy within a phosphor by stimulation with visible light, to produce a luminescent signal. X-rays may induce such an energy storage. A plate based on this mechanism is called a photostimulable phosphor (PSP) plate and is one type of X-ray detector used in projectional radiography. Creating an image requires illuminating the plate twice: the first exposure, to the radiation of interest, "writes" the image, and a later, second illumination "reads" the image. The device to read such a plate is known as a phosphorimager.

Automatic exposure control

Automatic Exposure Control (AEC) is an X-ray exposure termination device. A medical radiography x-ray exposure is always initiated by a human operator but an AEC detector system may be used to terminate the exposure when a predetermined amount of radiation has been received. The intention of AEC is to provide consistent x-ray image exposure, whether to film, a digital detector or a CT scanner. AEC systems may also automatically set exposure factors such as the X-ray tube current and voltage.

X-ray detector instrument that can detect x-rays

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.


  1. "X-Rays". NASA. Archived from the original on November 22, 2012. Retrieved November 7, 2012.
  2. Novelline, Robert (1997). Squire's Fundamentals of Radiology. Harvard University Press. 5th edition. ISBN   0-674-83339-2.
  3. "X-ray". Oxford English Dictionary (3rd ed.). Oxford University Press. September 2005. (Subscription or UK public library membership required.)
  4. Filler, Aaron (2009). "The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI". Nature Precedings. doi:10.1038/npre.2009.3267.5..
  5. Anderson, J.G. (January 1945), "William Morgan and X-rays", Transactions of the Faculty of Actuaries, 17: 219–221, doi:10.1017/s0071368600003001
  6. Wyman, Thomas (Spring 2005). "Fernando Sanford and the Discovery of X-rays". "Imprint", from the Associates of the Stanford University Libraries: 5–15.
  7. Thomson, Joseph J. (1903). The Discharge of Electricity through Gasses. USA: Charles Scribner's Sons. pp. 182–186.
  8. Gaida, Roman; et al. (1997). "Ukrainian Physicist Contributes to the Discovery of X-Rays". Mayo Foundation for Medical Education and Research. Archived from the original on 2008-05-28. Retrieved 2008-04-06.
  9. Wiedmann's Annalen, Vol. XLVIII
  10. Hrabak, M.; Padovan, R. S.; Kralik, M; Ozretic, D; Potocki, K (2008). "Scenes from the past: Nikola Tesla and the discovery of X-rays". RadioGraphics. 28 (4): 1189–92. doi:10.1148/rg.284075206. PMID   18635636.
  11. Chadda, P. K. (2009). Hydroenergy and Its Energy Potential. Pinnacle Technology. pp. 88–. ISBN   978-1-61820-149-2.
  12. From his technical publications, it is indicated that he invented and developed a special single-electrode X-ray tube: Morton, William James and Hammer, Edwin W. (1896) American Technical Book Co., p. 68., U.S. Patent 514,170 , "Incandescent Electric Light", and U.S. Patent 454,622 "System of Electric Lighting". These differed from other X-ray tubes in having no target electrode and worked with the output of a Tesla Coil.
  13. Stanton, Arthur (1896-01-23). "Wilhelm Conrad Röntgen On a New Kind of Rays: translation of a paper read before the Würzburg Physical and Medical Society, 1895". Nature . 53 (1369): 274–6. Bibcode:1896Natur..53R.274.. doi:10.1038/053274b0. see also pp. 268 and 276 of the same issue.
  14. Karlsson, Erik B. (9 February 2000). "The Nobel Prizes in Physics 1901–2000". Stockholm: The Nobel Foundation. Retrieved 24 November 2011.
  15. Peters, Peter (1995). "W. C. Roentgen and the discovery of x-rays". Textbook of Radiology. Medcyclopedia.com, GE Healthcare. Archived from the original on 11 May 2008. Retrieved 5 May 2008.
  16. Glasser, Otto (1993). Wilhelm Conrad Röntgen and the early history of the roentgen rays. Norman Publishing. pp. 10–15. ISBN   978-0930405229.
  17. Arthur, Charles (2010-11-08). "Google doodle celebrates 115 years of X-rays". The Guardian. Guardian US. Retrieved 5 February 2019.
  18. Kevles, Bettyann Holtzmann (1996). Naked to the Bone Medical Imaging in the Twentieth Century. Camden, NJ: Rutgers University Press. pp. 19–22. ISBN   978-0-8135-2358-3.
  19. Sample, Sharro (2007-03-27). "X-Rays". The Electromagnetic Spectrum. NASA . Retrieved 2007-12-03.
  20. Markel, Howard (20 December 2012). "'I Have Seen My Death': How the World Discovered the X-Ray". PBS NewsHour. PBS. Retrieved 23 March 2019.
  21. Glasser, Otto (1958). Dr. W. C. Ro ̈ntgen. Springfield: Thomas.
  22. Natale, Simone (2011-11-01). "The Invisible Made Visible". Media History. 17 (4): 345–358. doi:10.1080/13688804.2011.602856. hdl:2134/19408.
  23. Natale, Simone (2011-08-04). "A Cosmology of Invisible Fluids: Wireless, X-Rays, and Psychical Research Around 1900". Canadian Journal of Communication. 36 (2). doi:10.22230/cjc.2011v36n2a2368.
  24. Grove, Allen W. (1997-01-01). "Rontgen's Ghosts: Photography, X-Rays, and the Victorian Imagination". Literature and Medicine. 16 (2): 141–173. doi:10.1353/lm.1997.0016.
  25. 1 2 3 4 5 6 Feldman, A (1989). "A sketch of the technical history of radiology from 1896 to 1920". Radiographics. 9 (6): 1113–1128. doi:10.1148/radiographics.9.6.2685937. PMID   2685937.
  26. "Major John Hall-Edwards". Birmingham City Council. Archived from the original on September 28, 2012. Retrieved 2012-05-17.
  27. Kudriashov, Y. B. (2008). Radiation Biophysics. Nova Publishers. p. xxi. ISBN   9781600212802.
  28. 1 2 Spiegel, P. K (1995). "The first clinical X-ray made in America—100 years". American Journal of Roentgenology. 164 (1): 241–243. doi:10.2214/ajr.164.1.7998549. PMID   7998549.
  29. Nicolaas A. Rupke, Eminent Lives in Twentieth-Century Science and Religion, page 300, Peter Lang, 2009 ISBN   3631581203
  30. National Library of Medicine. "Could X-rays Have Saved President William McKinley?" Visible Proofs: Forensic Views of the Body.
  31. Daniel, J. (April 10, 1896). "The X-Rays" (PDF). Science. 3 (67): 562–563. Bibcode:1896Sci.....3..562D. doi:10.1126/science.3.67.562. PMID   17779817.
  32. Fleming, Walter Lynwood (1909). The South in the Building of the Nation: Biography A-J. Pelican Publishing. p. 300. ISBN   978-1589809468.
  33. Ce4Rt (Mar 2014). Understanding Ionizing Radiation and Protection. p. 174.
  34. Glasser, Otto (1934). Wilhelm Conrad Röntgen and the Early History of the Roentgen Rays. Norman Publishing. p. 294. ISBN   978-0930405229.
  35. Sansare K, Khanna V, Karjodkar F (2011). "Early victims of X-rays: A tribute and current perception". Dentomaxillofacial Radiology. 40 (2): 123–125. doi:10.1259/dmfr/73488299. PMC   3520298 . PMID   21239576.
  36. 1 2 Kathern, Ronald L. and Ziemer, Paul L. The First Fifty Years of Radiation Protection, physics.isu.edu
  37. Hrabak M, Padovan RS, Kralik M, Ozretic D, Potocki K (July 2008). "Nikola Tesla and the Discovery of X-rays". RadioGraphics. 28 (4): 1189–92. doi:10.1148/rg.284075206. PMID   18635636.
  38. California, San Francisco Area Funeral Home Records, 1835–1979. Database with images. FamilySearch. Jacob Fleischman in entry for Elizabeth Aschheim. 03 Aug 1905. Citing funeral home J.S. Godeau, San Francisco, San Francisco, California. Record book Vol. 06, p. 1-400, 1904–1906. San Francisco Public Library. San Francisco History and Archive Center.
  39. Editor. (August 5, 1905). Aschheim. Obituaries. San Francisco Examiner. San Francisco, California.
  40. Editor. (August 5, 1905). Obituary Notice. Elizabeth Fleischmann. San Francisco Chronicle. Page 10.
  41. Birmingham City Council: Major John Hall-Edwards Archived September 28, 2012, at the Wayback Machine
  42. Jorgensen, Timothy J. (10 October 2017). "Marie Curie and her X-ray vehicles' contribution to World War I battlefield medicine". The Conversation. Retrieved February 23, 2018.
  43. "T. C. BEIRNE'S X-RAY SHOE FITTING". Telegraph (Brisbane, Qld. : 1872–1947). 1925-07-17. p. 8. Retrieved 2017-11-05.
  44. "THE PEDOSCOPE". Sunday Times (Perth, WA : 1902–1954). 1928-07-15. p. 5. Retrieved 2017-11-05.
  45. "X-RAY SHOE FITTINGS". Biz (Fairfield, NSW : 1928–1972). 1955-07-27. p. 10. Retrieved 2017-11-05.
  46. "SHOE X-RAY DANGERS". Brisbane Telegraph (Qld. : 1948–1954). 1951-02-28. p. 7. Retrieved 2017-11-05.
  47. "X-ray shoe sets in S.A. 'controlled'". News (Adelaide, SA : 1923–1954). 1951-04-27. p. 12. Retrieved 2017-11-05.
  48. "Ban On Shoe X-ray Machines Resented". Canberra Times (ACT : 1926–1995). 1957-06-26. p. 4. Retrieved 2017-11-05.
  49. Fitzgerald, Richard (2000). "Phase-sensitive x-ray imaging". Physics Today. 53 (7): 23–26. Bibcode:2000PhT....53g..23F. doi:10.1063/1.1292471.
  50. 1 2 David, C, Nohammer, B, Solak, H H, & Ziegler E (2002). "Differential x-ray phase contrast imaging using a shearing interferometer". Applied Physics Letters. 81 (17): 3287–3289. Bibcode:2002ApPhL..81.3287D. doi:10.1063/1.1516611.CS1 maint: multiple names: authors list (link)
  51. Wilkins, S W, Gureyev, T E, Gao, D, Pogany, A & Stevenson, A W (1996). "Phase-contrast imaging using polychromatic hard X-rays". Nature. 384 (6607): 335–338. Bibcode:1996Natur.384..335W. doi:10.1038/384335a0.CS1 maint: multiple names: authors list (link)
  52. Davis, T J, Gao, D, Gureyev, T E, Stevenson, A W & Wilkins, S W (1995). "Phase-contrast imaging of weakly absorbing materials using hard X-rays". Nature. 373 (6515): 595–598. Bibcode:1995Natur.373..595D. doi:10.1038/373595a0.CS1 maint: multiple names: authors list (link)
  53. Momose A, Takeda T, Itai Y, Hirano K (1996). "Phase-contrast X-ray computed tomography for observing biological soft tissues". Nature Medicine. 2 (4): 473–475. doi:10.1038/nm0496-473. PMID   8597962.
  54. Attwood, David (1999). Soft X-rays and extreme ultraviolet radiation. Cambridge University. p. 2. ISBN   978-0-521-65214-8. Archived from the original on 2012-11-11. Retrieved 2012-11-04.
  55. "Physics.nist.gov". Physics.nist.gov. Retrieved 2011-11-08.
  56. 1 2 Denny, P. P.; Heaton, B. (1999). Physics for Diagnostic Radiology. USA: CRC Press. p. 12. ISBN   978-0-7503-0591-4.
  57. Feynman, Richard; Leighton, Robert; Sands, Matthew (1963). The Feynman Lectures on Physics, Vol.1. USA: Addison-Wesley. pp. 2–5. ISBN   978-0-201-02116-5.
  58. L'Annunziata, Michael; Abrade, Mohammad (2003). Handbook of Radioactivity Analysis. Academic Press. p. 58. ISBN   978-0-12-436603-9.
  59. Grupen, Claus; Cowan, G.; Eidelman, S. D.; Stroh, T. (2005). Astroparticle Physics. Springer. p. 109. ISBN   978-3-540-25312-9.
  60. Hodgman, Charles, ed. (1961). CRC Handbook of Chemistry and Physics, 44th Ed. USA: Chemical Rubber Co. p. 2850.
  61. Government of Canada, Canadian Centre for Occupational Health and Safety (2019-05-09). "Radiation – Quantities and Units of Ionizing Radiation : OSH Answers". www.ccohs.ca. Retrieved 2019-05-09.
  62. Bushberg, Jerrold T.; Seibert, J. Anthony; Leidholdt, Edwin M.; Boone, John M. (2002). The essential physics of medical imaging. Lippincott Williams & Wilkins. p. 42. ISBN   978-0-683-30118-2.
  63. Bushberg, Jerrold T.; Seibert, J. Anthony; Leidholdt, Edwin M.; Boone, John M. (2002). The essential physics of medical imaging. Lippincott Williams & Wilkins. p. 38. ISBN   978-0-683-30118-2.
  64. Kissel, Lynn (2000-09-02). "RTAB: the Rayleigh scattering database". Radiation Physics and Chemistry. Lynn Kissel. 59 (2): 185–200. Bibcode:2000RaPC...59..185K. doi:10.1016/S0969-806X(00)00290-5. Archived from the original on 2011-12-12. Retrieved 2012-11-08.
  65. Attwood, David (1999). "3". Soft X-rays and extreme ultraviolet radiation. Cambridge University Press. ISBN   978-0-521-65214-8. Archived from the original on 2012-11-11. Retrieved 2012-11-04.
  66. "X-ray Transition Energies Database". NIST Physical Measurement Laboratory. 2011-12-09. Retrieved 2016-02-19.
  67. "X-Ray Data Booklet Table 1-3" (PDF). Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory. 2009-10-01. Archived from the original (PDF) on 23 April 2009. Retrieved 2016-02-19.
  68. Whaites, Eric; Cawson, Roderick (2002). Essentials of Dental Radiography and Radiology. Elsevier Health Sciences. pp. 15–20. ISBN   978-0-443-07027-3.
  69. Bushburg, Jerrold; Seibert, Anthony; Leidholdt, Edwin; Boone, John (2002). The Essential Physics of Medical Imaging. USA: Lippincott Williams & Wilkins. p. 116. ISBN   978-0-683-30118-2.
  70. Emilio, Burattini; Ballerna, Antonella (1994). "Preface". Biomedical Applications of Synchrotron Radiation: Proceedings of the 128th Course at the International School of Physics -Enrico Fermi- 12–22 July 1994, Varenna, Italy. IOS Press. p. xv. ISBN   90-5199-248-3.
  71. Camara, C. G.; Escobar, J. V.; Hird, J. R.; Putterman, S. J. (2008). "Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape" (PDF). Nature. 455 (7216): 1089–1092. Bibcode:2008Natur.455.1089C. doi:10.1038/nature07378 . Retrieved 2 February 2013.
  72. Paul, Helmut; Muhr, Johannes (1986). "Review of experimental cross sections for K-shell ionization by light ions". Physics Reports. 135 (2): 47–97. doi:10.1016/0370-1573(86)90149-3.
  73. Köhn, Christoph; Ebert, Ute (2014). "Angular distribution of Bremsstrahlung photons and of positrons for calculations of terrestrial gamma-ray flashes and positron beams". Atmospheric Research. 135-136: 432–465. arXiv: 1202.4879 . Bibcode:2014AtmRe.135..432K. doi:10.1016/j.atmosres.2013.03.012.
  74. Köhn, Christoph; Ebert, Ute (2015). "Calculation of beams of positrons, neutrons, and protons associated with terrestrial gamma ray flashes". Journal of Geophysical Research: Atmospheres. 120 (4): 1620–1635. doi:10.1002/2014JD022229.
  75. Kochkin, Pavlo; Köhn, Christoph; Ebert, Ute; Van Deursen, Lex (2016). "Analyzing x-ray emissions from meter-scale negative discharges in ambient air". Plasma Sources Science and Technology. 25 (4): 044002. doi:10.1088/0963-0252/25/4/044002.
  76. Cooray, Vernon; Arevalo, Liliana; Rahman, Mahbubur; Dwyer, Joseph; Rassoul, Hamid (2009). "On the possible origin of X-rays in long laboratory sparks". Journal of Atmospheric and Solar-Terrestrial Physics. 71 (17–18): 1890–1898. doi:10.1016/j.jastp.2009.07.010.
  77. Köhn, C; Chanrion, O; Neubert, T (2017). "Electron acceleration during streamer collisions in air". Geophysical Research Letters. 44 (5): 2604–2613. doi:10.1002/2016GL072216. PMC   5405581 . PMID   28503005.
  78. Köhn, C; Chanrion, O; Babich, L P; Neubert, T (2018). "Streamer properties and associated x-rays in perturbed air". Plasma Sources Science and Technology. 27: 015017. doi:10.1088/1361-6595/aaa5d8.
  79. Köhn, C; Chanrion, O; Neubert, T (2018). "High-Energy Emissions Induced by Air Density Fluctuations of Discharges". Geophysical Research Letters. 45 (10): 5194–5203. doi:10.1029/2018GL077788. PMC   6049893 . PMID   30034044.
  80. Förster, A; Brandstetter, S; Schulze-Briese, C (2019). "Transforming X-ray detection with hybrid photon counting detectors". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 377 (2147): 20180241. doi:10.1098/rsta.2018.0241. PMC   6501887 . PMID   31030653.
  81. "Roentgen's discovery of the x-ray". www.bl.uk. Retrieved 2019-05-09.
  82. 1 2 Roobottom CA, Mitchell G, Morgan-Hughes G (2010). "Radiation-reduction strategies in cardiac computed tomographic angiography". Clin Radiol. 65 (11): 859–67. doi:10.1016/j.crad.2010.04.021. PMID   20933639. Of the 5 billion imaging investigations performed worldwide...
  83. 1 2 Medical Radiation Exposure Of The U.S. Population Greatly Increased Since The Early 1980s, Science Daily, March 5, 2009
  84. Accuracy of total knee implant position assessment based on postoperative X-rays, registered to pre-operative CT-based 3D models. Annemieke van Haver, Sjoerd Kolk, Sebastian de Boodt, Kars Valkering, Peter Verdonk. Orthopaedic Proceedings, Published 20 February 2017. http://bjjprocs.boneandjoint.org.uk/content/99-B/SUPP_4/80
  85. Accuracy assessment of 2D X-ray to 3D CT registration for measuring 3D postoperative implant position. Lara Vigneron, Hendrik Delport, Sebastian de Boodt. White paper, Published 2014. http://www.materialise.com/en/system/files/uploads/resources/X-ray.pdf
  86. Herman, Gabor T. (2009). Fundamentals of Computerized Tomography: Image Reconstruction from Projections (2nd ed.). Springer. ISBN   978-1-85233-617-2.
  87. Advances in kilovoltage x-ray beam dosimetry in Hill R, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C (2014). "Advances in kilovoltage x-ray beam dosimetry". Phys Med Biol. 59 (6): R183–231. Bibcode:2014PMB....59R.183H. doi:10.1088/0031-9155/59/6/r183. PMID   24584183.CS1 maint: multiple names: authors list (link)
  88. Thwaites David I (2006). "Back to the future: the history and development of the clinical linear accelerator". Physics in Medicine and Biology. 51 (13): R343–R362. Bibcode:2006PMB....51R.343T. doi:10.1088/0031-9155/51/13/R20. PMID   16790912.
  89. Hall EJ, Brenner DJ (2008). "Cancer risks from diagnostic radiology". Br J Radiol. 81 (965): 362–78. doi:10.1259/bjr/01948454. PMID   18440940.
  90. Brenner DJ (2010). "Should we be concerned about the rapid increase in CT usage?". Rev Environ Health. 25 (1): 63–8. doi:10.1515/REVEH.2010.25.1.63. PMID   20429161.
  91. De Santis M, Cesari E, Nobili E, Straface G, Cavaliere AF, Caruso A (2007). "Radiation effects on development". Birth Defects Res. C Embryo Today. 81 (3): 177–82. doi:10.1002/bdrc.20099. PMID   17963274.
  92. "11th Report on Carcinogens". Ntp.niehs.nih.gov. Archived from the original on 2010-12-09. Retrieved 2010-11-08.
  93. Brenner DJ, Hall EJ (2007). "Computed tomography—an increasing source of radiation exposure". N. Engl. J. Med. 357 (22): 2277–84. doi:10.1056/NEJMra072149. PMID   18046031.
  94. Upton AC (2003). "The state of the art in the 1990s: NCRP report No. 136 on the scientific bases for linearity in the dose-response relationship for ionizing radiation". Health Physics. 85 (1): 15–22. doi:10.1097/00004032-200307000-00005. PMID   12852466.
  95. Calabrese EJ, Baldwin LA (2003). "Toxicology rethinks its central belief" (PDF). Nature. 421 (6924): 691–2. Bibcode:2003Natur.421..691C. doi:10.1038/421691a. PMID   12610596. Archived from the original (PDF) on 2011-09-12.
  96. Berrington de González A, Darby S (2004). "Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries". Lancet. 363 (9406): 345–351. doi:10.1016/S0140-6736(04)15433-0. PMID   15070562.
  97. 1 2 Brenner DJ, Hall EJ (2007). "Computed tomography- an increasing source of radiation exposure". New England Journal of Medicine. 357 (22): 2277–2284. doi:10.1056/NEJMra072149. PMID   18046031.
  98. 1 2 Radiologyinfo.org, Radiological Society of North America and American College of Radiology
  99. "National Cancer Institute: Surveillance Epidemiology and End Results (SEER) data". Seer.cancer.gov. 2010-06-30. Retrieved 2011-11-08.
  100. Caon, M., Bibbo, G. & Pattison, J. (2000). "Monte Carlo calculated effective dose to teenage girls from computed tomography examinations". Radiation Protection Dosimetry. 90 (4): 445–448. doi:10.1093/oxfordjournals.rpd.a033172.CS1 maint: multiple names: authors list (link)
  101. Shrimpton, P.C; Miller, H.C; Lewis, M.A; Dunn, M. Doses from Computed Tomography (CT) examinations in the UK – 2003 Review Archived September 22, 2011, at the Wayback Machine
  102. Gregory KJ, Bibbo G, Pattison JE (2008). "On the uncertainties in effective dose estimates of adult CT head scans". Medical Physics. 35 (8): 3501–10. Bibcode:2008MedPh..35.3501G. doi:10.1118/1.2952359. PMID   18777910.
  103. Giles D, Hewitt D, Stewart A, Webb J (1956). "Preliminary Communication: Malignant Disease in Childhood and Diagnostic Irradiation In-Utero". Lancet. 271 (6940): 447. doi:10.1016/S0140-6736(56)91923-7. PMID   13358242.
  104. "Pregnant Women and Radiation Exposure". eMedicine Live online medical consultation. Medscape. 28 December 2008. Archived from the original on January 23, 2009. Retrieved 2009-01-16.
  105. Donnelly LF (2005). "Reducing radiation dose associated with pediatric CT by decreasing unnecessary examinations". American Journal of Roentgenology. 184 (2): 655–7. doi:10.2214/ajr.184.2.01840655. PMID   15671393.
  106. US National Research Council (2006). Health Risks from Low Levels of Ionizing Radiation, BEIR 7 phase 2. National Academies Press. pp. 5, fig.PS–2. ISBN   978-0-309-09156-5., data credited to NCRP (US National Committee on Radiation Protection) 1987
  107. "ANS / Public Information / Resources / Radiation Dose Calculator".
  108. The Nuclear Energy Option, Bernard Cohen, Plenum Press 1990 Ch. 5 Archived November 20, 2013, at the Wayback Machine
  109. Muller, Richard. Physics for Future Presidents, Princeton University Press, 2010
  110. X-Rays Archived 2007-03-15 at the Wayback Machine . Doctorspiller.com (2007-05-09). Retrieved on 2011-05-05.
  111. X-Ray Safety Archived April 4, 2007, at the Wayback Machine . Dentalgentlecare.com (2008-02-06). Retrieved on 2011-05-05.
  112. "Dental X-Rays". Idaho State University. Retrieved November 7, 2012.
  113. D.O.E. – About Radiation Archived April 27, 2012, at the Wayback Machine
  114. Chalkley, M.; Listl, S. (30 December 2017). "First do no harm – The impact of financial incentives on dental X-rays". Journal of Health Economics. 58 (March 2018): 1–9. doi:10.1016/j.jhealeco.2017.12.005. PMID   29408150.
  115. Wolfram, Stephen (2002). A New Kind of Science. Champaign, Illinois: Wolfram Media, Inc. p. 586. ISBN   978-1579550080 . Retrieved 15 March 2018.
  116. Kasai, Nobutami; Kakudo, Masao (2005). X-ray diffraction by macromolecules. Tokyo: Kodansha. pp. 291–2. ISBN   978-3-540-25317-4.
  117. Ahi, Kiarash (May 26, 2016). "Advanced terahertz techniques for quality control and counterfeit detection". Proc. SPIE 9856, Terahertz Physics, Devices, and Systems X: Advanced Applications in Industry and Defense, 98560G. Terahertz Physics, Devices, and Systems X: Advanced Applications in Industry and Defense. 9856: 98560G. Bibcode:2016SPIE.9856E..0GA. doi:10.1117/12.2228684 . Retrieved May 26, 2016.
  118. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Verbeeck J, Tian H, Tan H, Dik J, Radepont M, Cotte M (2011). "Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Synchrotron X-ray Spectromicroscopy and Related Methods. 1. Artificially Aged Model Samples". Analytical Chemistry. 83 (4): 1214–1223. doi:10.1021/ac102424h. PMID   21314201.Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Dik J, Radepont M, Hendriks E, Geldof M, Cotte M (2011). "Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Synchrotron X-ray Spectromicroscopy and Related Methods. 2. Original Paint Layer Samples" (PDF). Analytical Chemistry. 83 (4): 1224–1231. doi:10.1021/ac1025122. PMID   21314202.
  119. Bickmore, Helen (2003). Milady's Hair Removal Techniques: A Comprehensive Manual. ISBN   978-1401815554.
  120. Frame, Paul. "Wilhelm Röntgen and the Invisible Light". Tales from the Atomic Age. Oak Ridge Associated Universities. Retrieved 2008-05-19.
  121. Als-Nielsen, Jens; Mcmorrow, Des (2001). Elements of Modern X-Ray Physics. John Wiley & Sons Ltd. pp. 40–41. ISBN   978-0-471-49858-2.