PFBR | |
---|---|
Generation | Prototype |
Reactor concept | Sodium-cooled fast reactor |
Reactor line | IFBR (Indian fast-breeder Reactor) |
Designed by | IGCAR |
Manufactured by | BHAVINI |
Status | Completed [1] |
Main parameters of the reactor core | |
Fuel (fissile material) | Plutonium/235U [2] |
Fuel state | Solid |
Neutron energy spectrum | Fast |
Primary control method | Control rods |
Primary coolant | Liquid sodium |
Reactor usage | |
Primary use | Breeding of 233U for AHWR-300 and generation of electricity |
Power (thermal) | 1253 |
Power (electric) | 500 |
Prototype Fast Breeder Reactor | |
---|---|
Country | India |
Location | Madras |
Coordinates | 12°33′11″N80°10′24″E / 12.55306°N 80.17333°E |
Status | Under construction |
Construction began | 2004 |
Commission date | October 2022 (planned) [3] |
Construction cost | ₹5,850 crore (equivalent to ₹220 billionorUS$2.58 billion in 2023) [3] |
Owner | BHAVINI |
Operator | BHAVINI |
Nuclear power station | |
Reactor type | Fast breeder |
Cooling source | |
Power generation | |
Nameplate capacity | 500 MW |
The Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium-cooled, fast breeder reactor that is being constructed at Kokkilamedu, near Kalpakkam, in Tamil Nadu state, India. [4] The Indira Gandhi Centre for Atomic Research (IGCAR) is responsible for the design of this reactor, the Advanced Fuel Fabrication Facility at the Bhabha Atomic Research Centre in Tarapur is responsible for MOX fuel fabrication and BHEL is providing technology and equipment for construction of the reactor. [5] [6] The facility builds on the decades of experience gained from operating the lower power Fast Breeder Test Reactor (FBTR). At first, the reactor's construction was supposed to be completed in September 2010, but there were several delays. The Prototype Fast Breeder Reactor is scheduled to be put into service in December 2024, [7] which is more than 20 years after construction began and 14 years after the original commissioning date, as of December 2023. The project's cost has doubled from ₹3,500 crore to ₹7,700 crore due to the multiple delays. The construction was completed on 4th March 2024 with commencement of core loading of the reactor hence paving the way for the eventual full utilization of India’s abundant thorium reserves. [8] [9]
The Kalpakkam PFBR is designed to use uranium-238 to breed plutonium in a sodium-cooled fast reactor design. The use of thorium-232, which in itself is not a fissile material, as a blanket is also envisaged in this stage. By transmutation, thorium will create fissile uranium-233 which will be used as fuel in the third stage. FBR is thus a stepping stone for the third stage of the program paving the way for the eventual full utilization of India's abundant thorium reserves. [8] [10] The surplus plutonium (or uranium-233 for thorium reactors) from each fast reactor can be used to set up more such reactors and grow the nuclear capacity in tune with India's needs for power. The PFBR is a part of the three-stage nuclear power program.
PFBR, with closed fuel cycle as the energy resource, is capable of generating a large amount of U-233 (a fissile isotope) from the abundant available thorium-232 within the country, to launch the third stage nuclear energy programme based on U-233 fuel cycle. [11]
The fuel for the PFBR will initially be Uranium-Plutonium mixed oxide (MOX). [12]
India has the capability to use thorium cycle based processes to extract nuclear fuel. This is of special significance to the Indian nuclear power generation strategy as India has one of the world's largest reserves of thorium, which could provide power for perhaps as long as 60,000 years. [13] [14]
The design of this reactor was started in the 1980s, as a prototype for a 600 MW FBR. Construction of the first two FBR are planned at Kalpakkam, after a year of successful operation of the PFBR. Other four FBR are planned to follow beyond 2030, at sites to be defined. [15]
In 2007, the reactor was planned to begin its operation in 2010, but as of 2019, it was expected to reach first criticality in 2020. [16]
In July 2017, it was reported that the reactor is in final preparation to go critical. [17] However in August 2020, it was reported that the reactor might go critical only in December 2021. [18]
As of February 2021, around ₹6,840 crore (equivalent to ₹77 billionorUS$919.65 million in 2023) have been spent in the construction and commissioning of the reactor. The reactor is now expected to be operational by October 2022. [3] [19]
Prime Minister Narendra Modi was in Kalpakkam on 4 March 2024 to witness the initiation of its first core loading. A press release described the PFBR as marking the second stage of India's three-stage nuclear power program. [20]
On 31 July 2024, the Atomic Energy Regulatory Board (AERB) approved adding nuclear fuel and starting the chain reaction. [21] It is expected to be operational by end of 2025. [22] A few lower power physics experiments will be carried out once sustained nuclear chain reaction is achieved. The next step will link the reactor to electrical grid and start producing power on a commercial basis, pending approval from AERB. Kalpakkam will see the construction of two more fast breeder reactors after the Department of Atomic Energy (DAE) is satisfied with the reactor's performance. [23]
The reactor is a pool type LMFBR with 1,750 tonnes of sodium as coolant. Designed to generate 500 MWe of electrical power, with an operational life of 40 years, it will burn a mixed uranium-plutonium MOX fuel, a mixture of PuO
2 and UO
2. A fuel burnup of 100 GWd/t is expected. The Fuel Fabrication Facility (FFF), under the direction of Bhabha Atomic Research Centre (BARC), Tarapur is responsible for the fuel rods manufacturing. FFF comes under "Nuclear Recycle Board" of Bhabha Atomic Research Center and has been responsible for fuel rod manufacturing of various types in the past.[ citation needed ] FFF Tarapur in early 2023 had successfully completed fabrication of 100,000 PFBR fuel elements.[ clarification needed ] [24]
The prototype fast breeder reactor has a negative void coefficient, thus ensuring a high level of passive nuclear safety. This means that when the reactor overheats (below the boiling point of sodium) the speed of the fission chain reaction decreases, lowering the power level and the temperature. [25] Similarly, before such a potential positive void condition may form from a complete loss of coolant accident, sufficient coolant flow rates are made possible by the use of conventional pump inertia, alongside multiple inlet-perforations, to prevent the possible accident scenario of a single blockage halting coolant flow. [25]
The active-safety reactor decay heat removal system consists of four independent coolant circuits of 8MWt capacity each. [26] Further active defenses against the positive feedback possibility include two independent SCRAM shutdown systems, designed to shut the fission reactions down effectively within a second, with the remaining decay heat then needing to be cooled for a number of hours by the four independent circuits.
The fact that the PFBR is cooled by liquid sodium creates additional safety requirements to isolate the coolant from the environment, especially in a loss of coolant accident scenario, since sodium explodes if it comes into contact with water and burns when in contact with air. This latter event occurred in the Monju reactor in Japan in 1995. Another consideration with the use of sodium as a coolant is the absorption of neutrons to generate the radioactive isotope 24
Na, which has a 15-hour half life. [27]
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely, although inherent control by means of delayed neutrons also plays an important role in reactor output control. The efficiency of nuclear fuel is much higher than fossil fuels; the 5% enriched uranium used in the newest reactors has an energy density 120,000 times higher than coal.
Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium fuel used in the light-water reactors that predominate nuclear power generation.
A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors. These materials are called fertile materials since they can be bred into fuel by these breeder reactors.
Phénix was a small-scale prototype fast breeder reactor, located at the Marcoule nuclear site, near Orange, France. It was a pool-type liquid-metal fast breeder reactor cooled with liquid sodium. It generated 590 MW of thermal power, and had a breeding ratio of 1.16, but normally had to be stopped for refueling operations every two months. Phénix continued operating after the closure of the subsequent full-scale prototype Superphénix in 1997. After 2004, its main use was investigation of transmutation of nuclear waste while also generating some electricity. Phénix was shut down in 2009.
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:
The integral fast reactor (IFR), originally the advancedliquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.
The Bhabha Atomic Research Centre (BARC) is India's premier nuclear research facility, headquartered in Trombay, Mumbai, Maharashtra, India. It was founded by Homi Jehangir Bhabha as the Atomic Energy Establishment, Trombay (AEET) in January 1954 as a multidisciplinary research program essential for India's nuclear program. It operates under the Department of Atomic Energy (DAE), which is directly overseen by the Prime Minister of India.
Indira Gandhi Centre for Atomic Research (IGCAR) is one of India's premier nuclear research centres. It is the second largest establishment of the Department of Atomic Energy (DAE), next to Bhabha Atomic Research Centre (BARC), located at Kalpakkam, 80 km south of Chennai, India. It was established in 1971 as an exclusive centre dedicated to the pursuit of fast reactor science and technology, due to the vision of Vikram Sarabhai. Originally, it was called Reactor Research Centre (RRC). It was renamed to Indira Gandhi Centre for Atomic Research (IGCAR) by the then Prime Minister of India Rajiv Gandhi in December 1985. The centre is engaged in broad-based multidisciplinary programme of scientific research and advanced engineering directed towards the development of fast breeder reactor technology in India.
Generation IVreactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of generation IV reactors – specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.
A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.
Madras Atomic Power Station (MAPS) located at Kalpakkam about 80 kilometres (50 mi) south of Chennai, India, is a comprehensive nuclear power production, fuel reprocessing, and waste treatment facility that includes plutonium fuel fabrication for fast breeder reactors (FBRs). It is also India's first fully indigenously constructed nuclear power station, with two units each generating 220 MW of electricity. The first and second units of the station went critical in 1983 and 1985, respectively. The station has reactors housed in a reactor building with double shell containment improving protection also in the case of a loss-of-coolant accident. An Interim Storage Facility (ISF) is also located in Kalpakkam.
The advanced heavy-water reactor (AHWR) or AHWR-300 is the latest Indian design for a next-generation nuclear reactor that burns thorium in its fuel core. It is slated to form the third stage in India's three-stage fuel-cycle plan. This phase of the fuel cycle plan was supposed to be built starting with a 300 MWe prototype in 2016.
The Fast Breeder Test Reactor (FBTR) is a breeder reactor located at Kalpakkam, Tamil Nadu, India. The Indira Gandhi Center for Atomic Research (IGCAR) and Bhabha Atomic Research Centre (BARC) jointly designed, constructed, and operate the reactor.
Nuclear power is the fifth-largest source of electricity in India after coal, hydro, solar and wind. As of November 2023, India has 23 nuclear reactors in operation in 8 nuclear power plants, with a total installed capacity of 8,180 MW. Nuclear power produced a total of 48 TWh in 2023, contributing around 3% of total power generation in India. 11 more reactors are under construction with a combined generation capacity of 8,700 MW.
India's three-stage nuclear power programme was formulated by Homi Bhabha, the well-known physicist, in the 1950s to secure the country's long term energy independence, through the use of uranium and thorium reserves found in the monazite sands of coastal regions of South India. The ultimate focus of the programme is on enabling the thorium reserves of India to be utilised in meeting the country's energy requirements. Thorium is particularly attractive for India, as India has only around 1–2% of the global uranium reserves, but one of the largest shares of global thorium reserves at about 25% of the world's known thorium reserves. However, thorium is more difficult to use than uranium as a fuel because it requires breeding, and global uranium prices remain low enough that breeding is not cost effective.
The BN-800 reactor is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. The reactor is designed to generate 880 MW of electrical power. The plant was considered part of the weapons-grade Plutonium Management and Disposition Agreement signed between the United States and Russia. The reactor is part of the final step for a plutonium-burner core The plant reached its full power production in August 2016. According to Russian business journal Kommersant, the BN-800 project cost 140.6 billion rubles.
The BN-1200 reactor is a sodium-cooled fast breeder reactor project, under development by OKBM Afrikantov in Zarechny, Russia. The BN-1200 is based on the earlier BN-600 and especially BN-800, with which it shares a number of features. The reactor's name comes from its electrical output, nominally 1220 MWe.
Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential. It is difficult to weaponize the uranium-233 that is bred in the reactor. Plutonium-239 is produced at much lower levels and can be consumed in thorium reactors.
The Fast Breeder Reactor-600 (FBR-600) or Indian Fast Breeder Reactor (IFBR) or Commercial Fast Breeder Reactor (CFBR) is a 600-MWe fast breeder nuclear reactor design presently being designed as part of India's three-stage nuclear power programme to commercialise the Prototype Fast Breeder Reactor built at Kalpakkam. The Indira Gandhi Centre for Atomic Research (IGCAR) is responsible for the design of this reactor as a successor for Prototype Fast Breeder Reactor (PFBR). The 1st twin unit would come up within the BHAVINI premises at Madras Atomic Power Station at Kalpakkam, close to the PFBR site itself.
The IPHWR is a class of Indian pressurized heavy-water reactors designed by the Bhabha Atomic Research Centre. The baseline 220 MWe design was developed from the CANDU based RAPS-1 and RAPS-2 reactors built at Rawatbhata, Rajasthan. Later the design was indigenised based on VVER technology which was scaled to 540 MWe and 700 MWe designs. Currently there are 18 units of various types operational at various locations in India.
{{cite news}}
: CS1 maint: unfit URL (link)