Nameplate capacity

Last updated

Nameplate capacity, also known as the rated capacity, nominal capacity, installed capacity, maximum effect or Gross Capacity, [1] is the intended full-load sustained output of a facility such as a power station, [2] [3] electric generator, a chemical plant, [4] fuel plant, mine, [5] metal refinery, [6] and many others. Nameplate capacity is the theoretical output registered with authorities for classifying the unit. For intermittent power sources, such as wind and solar, nameplate power is the source's output under ideal conditions, such as maximum usable wind or high sun on a clear summer day.

Contents

Capacity factor measures the ratio of actual output over an extended period to nameplate capacity. Power plants with an output consistently near their nameplate capacity have a high capacity factor.

For electric power stations, the power output is expressed in Megawatt electrical (MWe). For fuel plants, it is the refinery capacity in barrels per day. [7] [8]

Power stations

Dispatchable power

For dispatchable power, this capacity depends on the internal technical capability of the plant to maintain output for a reasonable amount of time (for example, a day), neither momentarily nor permanently, and without considering external events such as lack of fuel or internal events such as maintenance. [9] Actual output can be different from nameplate capacity for a number of reasons depending on equipment and circumstances. [9] [10]

Non-dispatchable power

For non-dispatchable power, particularly renewable energy, nameplate capacity refers to generation under ideal conditions. Output is generally limited by weather conditions, hydroelectric dam water levels, tidal variations and other outside forces. Equipment failures and maintenance usually contribute less to capacity factor reduction than the innate variation of the power source. In photovoltaics, capacity is rated under Standard Test Conditions usually expressed as watt-peak (Wp). In addition, a PV system's nameplate capacity is sometimes denoted by a subindex, for example, MWDC or MWAC, to identify the raw DC power or converted AC power output. [ citation needed ]

Generator capacity

Diagram of a turbo-electric COGES power-plant, with power-consuming pump COGES diagram.svg
Diagram of a turbo-electric COGES power-plant, with power-consuming pump

The term is connected with nameplates on electrical generators as these plates describing the model name and manufacturer usually also contain the rated output, [11] but the rated output of a power station to the electrical grid is invariably less than the generator nameplate capacity, because the components connecting the actual generator to the "grid" also use power. Thus there is a distinction between component capacity and facility capacity.

See also

Related Research Articles

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Wind power</span> Electrical power generation from wind

Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails, windmills and windpumps, but today it is mostly used to generate electricity. This article deals only with wind power for electricity generation. Today, wind power is generated almost completely with wind turbines, generally grouped into wind farms and connected to the electrical grid.

<span class="mw-page-title-main">Grid energy storage</span> Large scale electricity supply management

Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Electrical energy is stored during times when electricity is plentiful and inexpensive or when demand is low, and later returned to the grid when demand is high, and electricity prices tend to be higher.

<span class="mw-page-title-main">Base load</span> Minimum level of demand on an electrical grid over a span of time

The base load is the minimum level of demand on an electrical grid over a span of time, for example, one week. This demand can be met by unvarying power plants, dispatchable generation, or by a collection of smaller intermittent energy sources, depending on which approach has the best mix of cost, availability and reliability in any particular market. The remainder of demand, varying throughout a day, is met by dispatchable generation which can be turned up or down quickly, such as load following power plants, peaking power plants, or energy storage.

<span class="mw-page-title-main">Peaking power plant</span> Reserved for high demand times

Peaking power plants, also known as peaker plants, and occasionally just "peakers", are power plants that generally run only when there is a high demand, known as peak demand, for electricity. Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.

<span class="mw-page-title-main">Diesel generator</span> Combination of a diesel engine with an electrical generator

A diesel generator (DG) (also known as a diesel genset) is the combination of a diesel engine with an electric generator (often an alternator) to generate electrical energy. This is a specific case of engine generator. A diesel compression-ignition engine is usually designed to run on diesel fuel, but some types are adapted for other liquid fuels or natural gas.

<span class="mw-page-title-main">Capacity factor</span> Electrical production measure

The net capacity factor is the unitless ratio of actual electrical energy output over a given period of time to the theoretical maximum electrical energy output over that period. The theoretical maximum energy output of a given installation is defined as that due to its continuous operation at full nameplate capacity over the relevant period. The capacity factor can be calculated for any electricity producing installation, such as a fuel consuming power plant or one using renewable energy, such as wind or the sun. The average capacity factor can also be defined for any class of such installations, and can be used to compare different types of electricity production.

Dynamic Demand is the name of a semi-passive technology to support demand response by adjusting the load demand on an electrical power grid. It is also the name of an independent not-for-profit organization in the UK supported by a charitable grant from the Esmée Fairbairn Foundation, dedicated to promoting this technology. The concept is that by monitoring the frequency of the power grid, as well as their own controls, intermittent domestic and industrial loads switch themselves on/off at optimal moments to balance the overall grid load with generation, reducing critical power mismatches. As this switching would only advance or delay the appliance operating cycle by a few seconds, it would be unnoticeable to the end user. This is the foundation of dynamic demand control. In the United States, in 1982, a (now-lapsed) patent for this idea was issued to power systems engineer Fred Schweppe. Other patents have been issued based on this idea.

<span class="mw-page-title-main">Hybrid power</span> Combinations between different technologies to generate electric power

Hybrid power are combinations between different technologies to produce power.

<span class="mw-page-title-main">Load bank</span>

A load bank is a piece of electrical test equipment used to simulate an electrical load, to test an electric power source without connecting it to its normal operating load. During testing, adjustment, calibration, or verification procedures, a load bank is connected to the output of a power source, such as an electric generator, battery, servoamplifier or photovoltaic system, in place of its usual load. The load bank presents the source with electrical characteristics similar to its standard operating load, while dissipating the power output that would normally be consumed by it. The power is usually converted to heat by a heavy duty resistor or bank of resistive heating elements in the device, and the heat removed by a forced air or water cooling system. The device usually also includes instruments for metering, load control, and overload protection. Load banks can either be permanently installed at a facility to be connected to a power source when needed, or portable versions can be used for testing power sources such as standby generators and batteries. They are necessary adjuncts to replicate, prove, and verify the real-life demands on critical power systems. They are also used during operation of intermittent renewable power sources such as wind turbines to shed excess power that the electric power grid cannot absorb.

<span class="mw-page-title-main">Dispatchable generation</span> Sources of electricity that can be used on demand

Dispatchable generation refers to sources of electricity that can be programmed on demand at the request of power grid operators, according to market needs. Dispatchable generators may adjust their power output according to an order. Non-dispatchable renewable energy sources such as wind power and solar photovoltaic (PV) power cannot be controlled by operators. Other types of renewable energy that are dispatchable without separate energy storage are hydroelectric, biomass, geothermal and ocean thermal energy conversion.

A load-following power plant, regarded as producing mid-merit or mid-priced electricity, is a power plant that adjusts its power output as demand for electricity fluctuates throughout the day. Load-following plants are typically in between base load and peaking power plants in efficiency, speed of start-up and shut-down, construction cost, cost of electricity and capacity factor.

Nominal power is the nameplate capacity of photovoltaic (PV) devices, such as solar cells, modules and systems. It is determined by measuring the electric current and voltage in a circuit, while varying the resistance under precisely defined conditions. The nominal power is important for designing an installation in order to correctly dimension its cabling and converters.

<span class="mw-page-title-main">Levelized cost of electricity</span>

The levelized cost of electricity (LCOE) is a measure of the average net present cost of electricity generation for a generator over its lifetime. It is used for investment planning and to compare different methods of electricity generation on a consistent basis.

<span class="mw-page-title-main">Electrical grid</span> Interconnected network for delivering electricity from suppliers to consumers

An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of:

Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and 3) external costs, or externalities, imposed on society.

Repowering is the process of replacing older power stations with newer ones that either have a greater nameplate capacity or more efficiency which results in a net increase of power generated. Repowering can happen in several different ways. It can be as small as switching out and replacing a boiler, to as large as replacing the entire system to create a more powerful system entirely. There are many upsides to repowering.

<span class="mw-page-title-main">Variable renewable energy</span> Class of renewable energy sources

Variable renewable energy (VRE) or intermittent renewable energy sources (IRES) are renewable energy sources that are not dispatchable due to their fluctuating nature, such as wind power and solar power, as opposed to controllable renewable energy sources, such as dammed hydroelectricity or biomass, or relatively constant sources, such as geothermal power.

Capacity credit is the fraction of the installed capacity of a power plant which can be relied upon at a given time, frequently expressed as a percentage of the nameplate capacity. A conventional (dispatchable) power plant can typically provide the electricity at full power as long as it has a sufficient amount of fuel and is operational, therefore the capacity credit of such a plant is close to 100%; it is exactly 100% for some definitions of the capacity credit. The output of a variable renewable energy (VRE) plant depends on the state of an uncontrolled natural resource, therefore a mechanically and electrically sound VRE plant might not be able to generate at the rated capacity when needed, so its CC is much lower than 100%. The capacity credit is useful for a rough estimate of the firm power a system with weather-dependent generation can reliably provide. For example, with a low, but realistic wind power capacity credit of 5%, 20 gigawatts (GW) worth of wind power needs to be added to the system in order to permanently retire a 1 GW fossil fuel plant while keeping the electrical grid reliability at the same level.

References

  1. Glossary of Terms in PRIS Reports. IAEA-PRIS
  2. Energy glossary Energy Information Administration . Retrieved: 23 September 2010.
  3. Glossary. Nuclear Regulatory Commission, 2 August 2010. Retrieved: 23 September 2010.
  4. Plant Performance Data (PPD) Archived 2010-09-10 at the Wayback Machine ICIS. Retrieved: 23 September 2010.
  5. The Future of Tantalum and Niobium Mining-Technology, 14 Jan 2010. Retrieved: 23 September 2010.
  6. Refining Capacity Alcoa , December 31, 2009.
  7. Refinery Economics Archived 2010-12-28 at the Wayback Machine Natural Resources Canada , 5 january 2009.
  8. Magnificent seven Archived 2008-09-05 at the Wayback Machine Arabian Business, 17 June 2008.
  9. 1 2 Kleiser, Thomas. Response to CDM page 2-4 by TÜV , 4 March 2009. Retrieved: 23 September 2010.
  10. Swain, Bibb. Designed to go above Nameplate Capacity Ethanol Producer, November 2006. Retrieved: 23 September 2010.
  11. Reitze, Arnold W. Air pollution control law: compliance and enforcement page 260 George Washington University Law School , 2001. ISBN   1-58576-027-7, ISBN   978-1-58576-027-5 Retrieved: 23 September 2010.