Availability factor

Last updated

The availability factor of a power plant is the duration it achieves production of electricity divided by the duration that it was planned to produce electricity. In the field of reliability engineering, availability factor is known as operational availability, . The capacity factor of a plant includes numerous other factors which determine the durations the plant is planned to produce electricity. A solar photovoltaic plant is not planned to operate in the dark of a night, hence unplanned maintenance occurring whilst the sun is set does not impact the availability factor.

Periods of generation where only partial generation of planned capacity occurs may or may not be deducted from the availability factor. An example of partial generation is a power plant with four installed turbines planned to be concurrently operational, but one of those turbines subsequently requires unplanned maintenance. Where deductions are made the metric is titled equivalent availability factor (EAF).

The availability of a power plant varies greatly depending on the type of fuel, the design of the plant and how the plant is operated. Everything else being equal, plants that are run less frequently have higher availability factors because they require less maintenance and because more inspections and maintenance can be scheduled during idle time. Most thermal power stations, such as coal, geothermal and nuclear power plants, have availability factors between 70% and 90%. Newer plants tend to have significantly higher availability factors, but preventive maintenance is as important as improvements in design and technology. Gas turbines have relatively high availability factors, ranging from 80% to 99%. Gas turbines are commonly used for peaking power plants, co-generation plants and the first stage of combined cycle plants.

Originally the term availability factor was used only for power plants that depended on an active, controlled supply of fuel, typically fossil or later also nuclear. The emergence of renewable energy such as hydro, wind and solar power, which operate without an active, controlled supply of fuel and which come to a standstill when their natural supply of energy ceases, requires a more careful distinction between the availability factor and the capacity factor. By convention, such zero production periods are counted against the capacity factor but not against the availability factor, which thus remains defined as depending on an active, controlled supply of fuel, along with factors concerning reliability and maintenance. A wind turbine cannot operate in wind speeds above a certain limit, which counts against its availability factor. [1] With this definition, modern wind turbines which require very little maintenance, have very high availability factors, up to about 98%. Photovoltaic power stations which have few or no moving parts and which can undergo planned inspections and maintenance during night have an availability factor approaching or equal to 100% when the sun is shining.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage, using for example, the pumped-storage method.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Distributed generation</span> Decentralised electricity generation

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

<span class="mw-page-title-main">Wind power</span> Electrical power generation from wind

Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails, windmills and windpumps, but today it is mostly used to generate electricity. This article deals only with wind power for electricity generation. Today, wind power is generated almost completely with wind turbines, generally grouped into wind farms and connected to the electrical grid.

<span class="mw-page-title-main">Capacity factor</span> Electrical production measure

The net capacity factor is the unitless ratio of actual electrical energy output over a given period of time to the theoretical maximum electrical energy output over that period. The theoretical maximum energy output of a given installation is defined as that due to its continuous operation at full nameplate capacity over the relevant period. The capacity factor can be calculated for any electricity producing installation, such as a fuel consuming power plant or one using renewable energy, such as wind, the sun or hydro-electric installations. The average capacity factor can also be defined for any class of such installations, and can be used to compare different types of electricity production.

<span class="mw-page-title-main">Hybrid power</span> Combinations between different technologies to generate electric power

Hybrid power are combinations between different technologies to produce power.

A load-following power plant, regarded as producing mid-merit or mid-priced electricity, is a power plant that adjusts its power output as demand for electricity fluctuates throughout the day. Load-following plants are typically in between base load and peaking power plants in efficiency, speed of start-up and shut-down, construction cost, cost of electricity and capacity factor.

<span class="mw-page-title-main">Solar power plants in the Mojave Desert</span> Supplies power to the electricity grid using excellent solar radiation

There are several solar power plants in the Mojave Desert which supply power to the electricity grid. Insolation in the Mojave Desert is among the best available in the United States, and some significant population centers are located in the area. These plants can generally be built in a few years because solar plants are built almost entirely with modular, readily available materials. Solar Energy Generating Systems (SEGS) is the name given to nine solar power plants in the Mojave Desert which were built in the 1980s, the first commercial solar plant. These plants have a combined capacity of 354 megawatts (MW) which made them the largest solar power installation in the world, until Ivanpah Solar Power Facility was finished in 2014.

<span class="mw-page-title-main">Renewable energy in Africa</span>

The developing nations of Africa are popular locations for the application of renewable energy technology. Currently, many nations already have small-scale solar, wind, and geothermal devices in operation providing energy to urban and rural populations. These types of energy production are especially useful in remote locations because of the excessive cost of transporting electricity from large-scale power plants. The applications of renewable energy technology has the potential to alleviate many of the problems that face Africans every day, especially if done in a sustainable manner that prioritizes human rights.

<span class="mw-page-title-main">Levelized cost of electricity</span> Measure of lifetime average net present cost of electricity generation

The levelized cost of electricity (LCOE) is a measure of the average net present cost of electricity generation for a generator over its lifetime. It is used for investment planning and to compare different methods of electricity generation on a consistent basis.

The United States has the second largest electricity sector in the world, with 4,178 Terawatt-hours of generation in 2023. In 2023 the industry earned $491b in revenue at an average price of $0.127/kWh.

Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and 3) external costs, or externalities, imposed on society.

<span class="mw-page-title-main">Renewable energy debate</span>

Policy makers often debate the constraints and opportunities of renewable energy.

<span class="mw-page-title-main">Energy in Malta</span>

Energy in Malta describes energy production, consumption and import in Malta. Malta has no domestic resource of fossil fuels and no gas distribution network, and relies overwhelmingly on imports of fossil fuels and electricity to cover its energy needs. Since 2015, the Malta–Sicily interconnector allows Malta to be connected to the European power grid and import a significant share of its electricity.

<span class="mw-page-title-main">Variable renewable energy</span> Class of renewable energy sources

Variable renewable energy (VRE) or intermittent renewable energy sources (IRES) are renewable energy sources that are not dispatchable due to their fluctuating nature, such as wind power and solar power, as opposed to controllable renewable energy sources, such as dammed hydroelectricity or bioenergy, or relatively constant sources, such as geothermal power.

<span class="mw-page-title-main">Energy in Hawaii</span> Overview of energy resources in Hawaii, US

Energy in the U.S. state of Hawaii is produced from a mixture of fossil fuel and renewable resources. Producing energy is complicated by the state's isolated location and lack of fossil fuel resources. The state relies heavily on imports of petroleum; Hawaii has the highest share of petroleum use in the United States, with 67% of electricity generation in the state coming from petroleum in 2023, compared to less than 1% nationally.

<span class="mw-page-title-main">Copper in renewable energy</span> The use of copper in renewable energy

Renewable energy sources such as solar, wind, tidal, hydro, biomass, and geothermal have become significant sectors of the energy market. The rapid growth of these sources in the 21st century has been prompted by increasing costs of fossil fuels as well as their environmental impact issues that significantly lowered their use.

A captive power plant, also called autoproducer or embedded generation, is an electricity generation facility used and managed by an industrial or commercial energy user for their own energy consumption. Captive power plants can operate off-grid or they can be connected to the electric grid to exchange excess generation.

<span class="mw-page-title-main">Renewable energy in South Africa</span>

Renewable energy in South Africa is energy generated in South Africa from renewable resources, those that naturally replenish themselves—such as sunlight, wind, tides, waves, rain, biomass, and geothermal heat. Renewable energy focuses on four core areas: electricity generation, air and water heating/cooling, transportation, and rural energy services. The energy sector in South Africa is an important component of global energy regimes due to the country's innovation and advances in renewable energy. South Africa's greenhouse gas (GHG) emissions is ranked as moderate and its per capita emission rate is higher than the global average. Energy demand within the country is expected to rise steadily and double by 2025.

References

  1. "AVAILABILITY FACTOR". huronwind.com . Retrieved 2017-02-11.