Spark spread

Last updated

The spark spread is the theoretical gross margin of a gas-fired power plant from selling a unit of electricity, having bought the fuel required to produce this unit of electricity. All other costs (operation and maintenance, capital and other financial costs) must be covered from the spark spread. The term was first coined by Tony West's trading team on the trading floor of National Power Ltd in Swindon, UK during the late 1990s and quickly came into common usage as other traders realised the trading and hedging opportunities.

Contents

The term dark spread, quark spread and bark spread [1] [2] refers to the similarly defined difference between cash streams (spread) for coal-fired power plants, nuclear power plants and bio-mass power plants respectively. These indicators of power plant economics are useful for trading energy markets. For operating or investment decisions published "spread" data are not applicable. Local market conditions, actual plant efficiencies and other plant costs have to be considered. A higher dark spread is more economically beneficial to the owner of the generator; an IPP with a dark spread of €15/MWh will be more profitable than a competitor with a dark spread of only €10/MWh.

Further definition of clean spread indicators include the price of carbon dioxide emission allowances (see: Emission trading).

Definition of spark spread

Conceptually, the spark spread (SS in megawatt-hours) equals: [3]

A more refined version of this calculation may be:[ citation needed ]

with
pE as price of electricity in MU/MWh
pG as price of natural gas in MU/MWh or MU/Btu
ηel as electrical efficiency resp.
HR as heat rate in Btu/MWh

While the above equations may be sufficient for a single power plant or electricity provider, more detailed calculations may needed depending on the analysis being performed. If the data is sourced from futures contracts for fuels and over-the-counter contracts for electricity, further calculations must be made to determine the appropriate hedge ratio of electricity to fuel. [4]

A precise definition of a spark spread has to be given by the source publishing such indicators. Definitions should specify energy (electricity and fuel) prices considered (delivery point & conditions) and the plant efficiency used for the calculation. Also, any plant operating costs that may be included should be stated. Typically, an efficiency of 50 % is considered for gas-fired plants, and 36% for coal-fired plants. [5]

In the UK, a non-rounded efficiency of 49.13% is used for calculating the gas conversion. In reality, each gas-fired plant has a different fuel efficiency, but 49.13% is used as a standard in the UK market because it provides an easy conversion between gas and power volumes. The spark spread value is therefore the power price minus the gas cost divided by 0.4913, i.e. Spark Spread = Power Price – (Gas cost/0.4913). As of August 2006, UK dark spreads were in the range of 10–30 £/MWh, while UK spark spreads were in the range of 4–9 £/MWh.

It is well-known that these values substantially understate the actual efficiency of modern plants. Best-in-class efficiencies (as of 2019) are near 64%, [6] [7] and commercial development is rapid.

Clean spread

In countries that are covered by the European Union Emissions Trading Scheme, generators have to consider also the cost of carbon dioxide emission allowances that will be under a cap and trade regime. Emission trading has started in the EU in January 2005.

The Clean Spark Spread is calculated using a gas emissions intensity factor of 0.411 tCO2/MWh. Therefore, the clean spark spread is calculated by subtracting the carbon price per tonne (multiplied by 0.411) from the ‘dirty’ spark spread, i.e. Clean Spark Spread = Spark Spread – (Carbon Price*0.411).

Clean spark spread or "spark green spread" represents the net revenue a generator makes from selling power, having bought gas and the required number of carbon allowances. This spread is calculated by adjusting the cost of natural gas for the efficiency of the generation and subsequently applying the market cost of procuring or opportunity cost of setting aside an emissions allowance such as a European Union Allowance (EUA) in the European Union Emissions Trading Scheme (EU ETS).

Let S: spark spread, E: electricity price, G: gas cost, Ng: number of carbon credits necessary to cover gas operation, Pcc: price of a carbon credit.

Then the Clean spark spread is defined as


Clean dark spread or "dark green spread" refers to an analogous indicator for coal-fired generation of electricity. The spark green spread and the dark green spread are especially important in areas where coal-fired electricity generation is prevalent as the convergence of the spreads will lead to an important decision point.

Let D: dark spread, E: electricity price, C: coal cost, Nc: number of carbon credits necessary to cover coal operation (2–2.5x that of gas), Pcc: price of a carbon credit.

Then, Clean dark spread = E - C - Nc*Pcc = D - Nc*Pcc

Climate spread: The difference between the dark green spread and the spark green spread is known as the "Climate Spread".

Climate spread = Clean dark spread - Clean spark spread = (D - Nc*Pcc) - (S - Ng*Pcc) = (D - S) - (Nc - Ng)*Pcc.

Note: (D - S) and (Nc - Ng) are positive numbers.

In a carbon constrained economy a power producer in a geographic area where coal is currently the preferred method by which electricity is generated may eventually encounter a negative climate spread if carbon credit prices rise. This would mean that when taking into consideration the cost to produce plus the cost of compliance with a cap and trade (coal is on average 2.5 times as polluting as natural gas for the same output of electricity), natural gas would be a better decision. This would begin to cause more internal abatement via power generation fuel switching and less reliance on flexible mechanisms. This is important due to concerns regarding supplementarity.

Climate spread is also interesting in that it is the fundamental driver for the price of carbon credits. Since the ETS cap-and-trade system covers the major polluting industries, power generation by coal- and gas-fired power plants, by far the largest power sources, create the most carbon credit demand within the ETS. To cover emissions on an ever-tightening ration of free EUA allowances, a coal-fired powered power plant will either have to abate internally or buy credits. If the price of marginal internal abatement is lower than the price of carbon credits, the firm will choose internal abatement. However marginal abatement becomes more and more expensive, at some point forcing the plant to buy credits – thus the carbon credit price is equal to the marginal cost of abatement to the extent that European power plants have chosen to abate.

Clean Dark Spreads are a reflection of the cost of generating power from coal after taking into account fuel (coal) and carbon allowance costs. A positive spread effectively means that it is profitable to generate electricity on a Baseload basis for the period in question, while a negative spread means that generation would be a loss-making activity. The Clean Spark Spreads do not take into account additional generating charges (beyond fuel and carbon), such as operational costs.

Both the UK and German Dark Spread tables use a fuel efficiency factor of 35% for the coal conversion, and an energy conversion factor of 7.1 for converting tonnes/coal into MWh/electricity. In reality, each type of coal has a different energy value and each coal-fired plant has a different fuel efficiency, but 35% is accepted as a broad standard. At the time of writing (March 2007) there is no liquid Dark Spread traded market in either the UK or Germany. The Dark Spread value is the power price minus the coal price divided by 0.35, i.e. Dark Spread = Power price – (Coal price/0.35).

The Clean Dark Spread is calculated using a coal emissions intensity factor of 0.971 tCO2/MWh. Therefore, the Clean Dark Spread is calculated by subtracting the carbon price (multiplied by 0.971) from the ‘dirty’ spark spread, i.e. Clean Dark Spread = Dark Spread – (Carbon Price*0.971).

Spark spread as cost of replacement power for intermittent renewables

Spark spread can be used to assess the loss of revenue if a power station is switched from a normal running scenario to one where it is held in reserve to provide power when a large population of wind, or other renewable generators, is unable to generate.

In theory, the power station operator would be indifferent to such non-running as long as he was paid the spread it would have earned during the normally expected number of hour run. In fact, if paid the expected spark spread for the hours it had expected to run in normal operating mode, the operator would be better off, because it would not incur the variable operating and maintenance costs (O&M costs), which are proportional to the electrical energy produced.

An assessment of the lost revenues is needed if some power plants, such as wind turbines, have absolute priority (must-run plants). A dispatching authority will in this case order the other plants to decrease power. In some countries plant operators are entitled to receive compensation for such interventions. In a competitive electricity market the situation can be handled by a balancing mechanism, in which any imbalance from the schedule (typically a day-ahead schedule) is penalized, either using the price from a balancing market or a calculated price.

Thus, since UK spark spreads were in the range of 4–9 £/MWh – on average £6.5/MWh, or 0.65 p/kWh, we can assess the likely cost of relegating existing power stations to a standby role for a large penetration of renewables as being around 0.65 p/kWh.

See also

Related Research Articles

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage.

<span class="mw-page-title-main">Emissions trading</span> Market-based approach used to control pollution

Emissions trading is a market-based approach to controlling pollution by providing economic incentives for reducing the emissions of pollutants. The concept is also known as cap and trade (CAT) or emissions trading scheme (ETS). One prominent example is carbon emission trading for CO2 and other greenhouse gases which is a tool for climate change mitigation. Other schemes include sulfur dioxide and other pollutants.

<span class="mw-page-title-main">Fossil fuel power station</span> Facility that burns fossil fuels to produce electricity

A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.

<span class="mw-page-title-main">Regional Greenhouse Gas Initiative</span> American carbon emission trading program

The Regional Greenhouse Gas Initiative (RGGI, pronounced "Reggie") is the first mandatory market-based program to reduce greenhouse gas emissions by the United States. RGGI is a cooperative effort among the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont, and Virginia to cap and reduce carbon dioxide (CO2) emissions from the power sector. RGGI compliance obligations apply to fossil-fueled power plants 25 megawatts (MW) and larger within the 11-state region. Pennsylvania's participation in the RGGI cooperative was ruled unconstitutional on November 1, 2023. North Carolina's entrance into RGGI has been blocked by the enactment of the state's fiscal year 2023-25 budget.

<span class="mw-page-title-main">Carbon capture and storage</span> Collecting carbon dioxide from industrial emissions

Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the carbon dioxide stream that is to be captured can result from burning fossil fuels or biomass. Usually the CO2 is captured from large point sources, such as a chemical plant or biomass plant, and then stored in an underground geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change. The IPCC's most recent report on mitigating climate change describes CCS retrofits for existing power plants as one of the ways to limit emissions from the electricity sector and meet Paris Agreement goals.

An integrated gasification combined cycle (IGCC) is a technology using a high pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas (syngas). It can then remove impurities from the syngas prior to the electricity generation cycle. Some of these pollutants, such as sulfur, can be turned into re-usable byproducts through the Claus process. This results in lower emissions of sulfur dioxide, particulates, mercury, and in some cases carbon dioxide. With additional process equipment, a water-gas shift reaction can increase gasification efficiency and reduce carbon monoxide emissions by converting it to carbon dioxide. The resulting carbon dioxide from the shift reaction can be separated, compressed, and stored through sequestration. Excess heat from the primary combustion and syngas fired generation is then passed to a steam cycle, similar to a combined cycle gas turbine. This process results in improved thermodynamic efficiency, compared to conventional pulverized coal combustion.

<span class="mw-page-title-main">Energy policy of the United Kingdom</span> Overview of the energy policy of the United Kingdom

The energy policy of the United Kingdom refers to the United Kingdom's efforts towards reducing energy intensity, reducing energy poverty, and maintaining energy supply reliability. The United Kingdom has had success in this, though energy intensity remains high. There is an ambitious goal to reduce carbon dioxide emissions in future years, but it is unclear whether the programmes in place are sufficient to achieve this objective. Regarding energy self-sufficiency, UK policy does not address this issue, other than to concede historic energy security is currently ceasing to exist.

The Acid Rain Program is a market-based initiative taken by the United States Environmental Protection Agency in an effort to reduce overall atmospheric levels of sulfur dioxide and nitrogen oxides, which cause acid rain. The program is an implementation of emissions trading that primarily targets coal-burning power plants, allowing them to buy and sell emission permits according to individual needs and costs. In 2011, the trading program that existed since 1995 was supplemented by four separate trading programs under the Cross-State Air Pollution Rule (CSAPR). On August 21, 2012, the United States Court of Appeals for the District of Columbia issued its Opinion and Order in the appeal of the Cross State Air Pollution Rule (CSAPR) for two independent legal reasons. The stay on CSAPR was lifted in October 2014, allowing implementation of the law and its trading programs to begin.

<span class="mw-page-title-main">Energy policy of Australia</span> Overview of the energy policy of Australia

The energy policy of Australia is subject to the regulatory and fiscal influence of all three levels of government in Australia, although only the State and Federal levels determine policy for primary industries such as coal. Federal policies for energy in Australia continue to support the coal mining and natural gas industries through subsidies for fossil fuel use and production. Australia is the 10th most coal-dependent country in the world. Coal and natural gas, along with oil-based products, are currently the primary sources of Australian energy usage and the coal industry produces over 30% of Australia's total greenhouse gas emissions. In 2018 Australia was the 8th highest emitter of greenhouse gases per capita in the world.

<span class="mw-page-title-main">Carbon emission trading</span> An approach to limit climate change by creating a market with limited allowances for CO2 emissions

Carbon emission trading (also called emission trading scheme (ETS) or cap and trade) is a type of emission trading scheme designed for carbon dioxide (CO2) and other greenhouse gases (GHG). It is a form of carbon pricing. Its purpose is to limit climate change by creating a market with limited allowances for emissions. This can lower competitiveness of fossil fuels and accelerate investments into low carbon sources of energy such as wind power and photovoltaics. Fossil fuels are the main driver for climate change. They account for 89% of all CO2 emissions and 68% of all GHG emissions.

Through the 1996 Electric Utilities Act the Alberta's deregulated electricity market began.

The environmental effects of transport in Australia are considerable. Australia subsidizes fossil fuel energy, keeping prices artificially low and raising greenhouse gas emissions due to the increased use of fossil fuels as a result of the subsidies. The Australian Energy Regulator and state agencies such as the New South Wales' Independent Pricing and Regulatory Tribunal set and regulate electricity prices, thereby lowering production and consumer cost.

<span class="mw-page-title-main">American Clean Energy and Security Act</span> Proposed United States climate and energy legislation (Waxman-Markey); never passed

The American Clean Energy and Security Act of 2009 (ACES) was an energy bill in the 111th United States Congress that would have established a variant of an emissions trading plan similar to the European Union Emission Trading Scheme. The bill was approved by the House of Representatives on June 26, 2009, by a vote of 219–212. With no prospect of overcoming a threatened Republican filibuster, the bill was never brought to the floor of the Senate for discussion or a vote. The House passage of the bill was the "first time either house of Congress had approved a bill meant to curb the heat-trapping gases scientists have linked to climate change."

Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and 3) external costs, or externalities, imposed on society.

Abatement cost is the cost of reducing environmental negatives such as pollution. Marginal cost is an economic concept that measures the cost of an additional unit. The marginal abatement cost, in general, measures the cost of reducing one more unit of pollution. Marginal abatement costs are also called the "marginal cost" of reducing such environmental negatives.

The United Kingdom is committed to legally binding greenhouse gas emissions reduction targets of 34% by 2020 and 80% by 2050, compared to 1990 levels, as set out in the Climate Change Act 2008. Decarbonisation of electricity generation will form a major part of this reduction and is essential before other sectors of the economy can be successfully decarbonised.

A carbon pricing scheme in Australia was introduced by the Gillard Labor minority government in 2011 as the Clean Energy Act 2011 which came into effect on 1 July 2012. Emissions from companies subject to the scheme dropped 7% upon its introduction. As a result of being in place for such a short time, and because the then Opposition leader Tony Abbott indicated he intended to repeal "the carbon tax", regulated organizations responded rather weakly, with very few investments in emissions reductions being made. The scheme was repealed on 17 July 2014, backdated to 1 July 2014. In its place the Abbott government set up the Emission Reduction Fund in December 2014. Emissions thereafter resumed their growth evident before the tax.

<i>Energiewende</i> Ongoing energy transition in Germany

The Energiewende is the ongoing transition by Germany to a low carbon, environmentally sound, reliable, and affordable energy supply. The new system intends to rely heavily on renewable energy, energy efficiency, and energy demand management.

<span class="mw-page-title-main">Electricity sector in Turkey</span> Electricity generation, transmission and consumption in Turkey

Turkey uses more electricity per person than the global average, but less than the European average, with demand peaking in summer due to air conditioning. Most electricity is generated from coal, gas and hydropower, with hydroelectricity from the east transmitted to big cities in the west. Electricity prices are state-controlled, but wholesale prices are heavily influenced by the cost of imported gas.

The so-called COGIX is an indicator for the operating efficiency of CHP-plants, that receive revenues at the wholesale electricity market. It is similar to the spark spread resp. green spark spread including emission costs for greenhouse gases, which is a contribution margin calculated from fuel costs, emission costs and revenues from electricity sales. In the COGIX framework, also the revenues from heat sales of the CHP-plant are considered.

References

  1. "The U.S. Power Industry, ISO Markets, Electric Power Transactions and Renewable Energy Resources" (PDF). scppa.org. Southern California Public Power Authority. Retrieved 19 October 2019.
  2. Schimmoler, Brian. "Dark, Spark and Quark". Power Engineering. Clarion Energy. Retrieved 19 October 2019.
  3. "Conversion Calculator: Spark Spread". Futures & Options Trading for Risk Management. CME Group. Retrieved 2 December 2023.
  4. "Conversion Calculator: Spark Spread". Futures & Options Trading for Risk Management. CME Group. Retrieved 2 December 2023.
  5. Tendances Carbone, the monthly bulletin on the European carbon market - Methodology (PDF), CDC Climat Research, 2013, p. 2, retrieved 2018-02-26, "The Clean spark spread, expressed in €/MWh, represents the difference between the price of electricity and the price of natural gas used to generate that electricity"
  6. "HA technology now available at industry-first 64 percent efficiency". General Electric Reports. General Electric. Retrieved 19 October 2019.
  7. "J-Series Turbines". amer.mhps.com. Mitsubishi Hitachi Power Systems. Retrieved 19 October 2019.