This article needs additional citations for verification .(February 2009) |
Electrical installations |
---|
Wiring practice by region or country |
Regulation of electrical installations |
Cabling and accessories |
Switching and protection devices |
An earth-leakage circuit breaker (ELCB) is a safety device used in electrical installations to prevent shock. It consists of either a current sensing mechanism, or a voltage sensing mechanism. Such a protection mechanism may be found in the form of distribution board modules, standalone devices, and special sockets (aka receptacles).
Voltage-operated ELCBs can still be found in the wild, though these largely fell out of favour after the invention of the current-sensing based RCD (aka GFCI) technology.
Early ELCBs, first introduced about sixty years ago[ when? ], were voltage operated devices (VO-ELCBs), detecting a voltage rise between installation metalwork and an external electrode.
If the wrong type was used on an installation, the level of protection given could be substantially less than that intended, in particular the voltage operated type can only protect against faults or shocks to metalwork connected to the circuit ground, connected to the VO-ELCB, it cannot detect current leaving a live wire and running to ground by another path, such as via a person standing on the Earth.
These were later replaced by current sensing devices about forty years ago[ when? ]. For some time afterwards both forms were referred to as ELCBs which brought some confusion. To address this the IEC introduced the term residual current device (RCD). Residual current refers to any residue when comparing current in the outbound and return currents in the circuit. In single phase circuits this is simply the line or phase current minus the neutral current. In a 3 phase circuit all current carrying conductors must be sensed.
In modern literature the term ELCB is sometimes incorrectly used to specifically refer to VO-ELCBs, while almost never used to refer to current sensing devices, which are almost exclusively referred to instead by terms such as RCD, RCCB and GFCI.
An ELCB is a specialised type of latching relay that has a building's incoming mains power connected through its switching contacts so that the ELCB disconnects the power when earth leakage is detected.
The ELCB detects fault currents between line and earth (ground) conductors within the portion of the installation it protects. If sufficient characteristics of a fault appear across the ELCB's sensing mechanism, then it will switch off the power, and remain off until manually reset.
A voltage-operated ELCB detects a rise in potential between the protected interconnected metalwork (equipment frames, conduits, enclosures) and a distant isolated Earth reference electrode. They operate at a detected potential of around 50 volts to open a main breaker and isolate the supply from the protected premises. [1]
A voltage-operated ELCB has a second terminal for connecting to the remote reference Earth connection.
The Earth circuit is modified when an ELCB is used; the connection to the Earth rod is passed through the ELCB by connecting to its two Earth terminals. One terminal goes to the installation Earth CPC (circuit protective conductor, aka Earth wire), and the other to the Earth rod (or sometimes other type of Earth connection).
RCDs exist in multiple sub-types, but the most basic form simply consists of a current transformer, in which the line and neutral conductors for the circuit are wound around a toroidal transformer core, and should there be a current leak between line and earth (ground), bypassing neutral, the imbalance in current flow between the line and neutral will cause a magnetic flux in the core, which then, if strong enough, activates a relay that opens the switch.
Advantages of voltage-sensing devices over current-sensing:
Disadvantages of voltage-sensing devices over current-sensing:
It is not unusual for an ELCB protected installation to have a second unintentional connection to Earth somewhere, one that does not pass through the ELCB sense coil. This can occur via metal pipework in contact with the ground, metal structural framework, outdoor home appliances in contact with soil, and so on.
When such a secondary connection is present, fault current may pass to Earth without being sensed by the ELCB. Despite this, perhaps counter-intuitively, the operation of the ELCB is not compromised. The purpose of the ELCB is to prevent Earthed metalwork rising to a dangerous voltage during fault conditions, and the ELCB continues to do this just the same, the ELCB will still cut the power at the same CPC voltage level. (The difference is that higher fault current is then needed to reach this voltage.)[ clarification needed ]
While voltage and current on the protective earth conductor is usually fault current from a live wire, this is not always the case, thus there are situations in which an ELCB can nuisance trip.
When an installation has two connections to Earth, a nearby high current lightning strike will cause a voltage gradient in the soil, presenting the ELCB sense coil with enough voltage to cause it to trip.
If the installation's Earth rod is placed close to the Earth rod of a neighbouring building, a high Earth leakage current in the other building can raise the local ground potential and cause a voltage difference across the two Earths, again tripping the ELCB. Close Earth rods are unsuitable for ELCB use for this reason, but in real life such installations are sometimes encountered.
Both RCDs and ELCBs are prone to nuisance trips from normal harmless Earth leakage to some degree. On one hand ELCBs are on average older, and hence tend to have less well developed filtering against nuisance trips, and on the other hand ELCBs are inherently immune to some of the causes of false trips RCDs suffer, and are generally less sensitive than RCDs. In practice RCD nuisance trips are much more common.
Another cause of nuisance tripping is due to accumulated or burden currents caused by items with lowered insulation resistance. This may occur due to older equipment, or equipment with heating elements, or even wiring in buildings in the tropics where prolonged damp and rain conditions can cause the insulation resistance to lower due to moisture tracking. If there is a 30 mA protective device in use and there is a 10 mA burden from various sources then the unit will trip at 20 mA. The individual items may each be electrically safe but a large number of small burden currents accumulates and reduces the tripping level. This was more a problem in past installations where multiple circuits were protected by a single ELCB.
Heating elements of the tubular form are filled with a very fine powder that can absorb moisture if the element has not be used for some time. In the tropics, this may occur, for example if a clothes drier has not been used for a year or a large water boiler used for coffee, etc. has been in storage. In such cases, if the unit is allowed to power up without RCD protection then it will normally dry out and successfully pass inspection. This type of problem can be seen even with brand new equipment.
Some ELCBs do not respond to rectified fault current. This issue is the same in principle with VO-ELCBs and RCDs, but VO-ELCBs are on average much older and specifications have improved considerably over the years, so an old VO-ELCB is more likely to have some fault current waveform that it will not respond to.
With any mechanical device, failures occur, and ELCBs should ideally be tested periodically to ensure they still work.
If either of the Earth wires become disconnected from the VO-ELCB, it will no longer trip and the installation will often no longer be properly Earthed.
In electrical engineering, ground or earth may be a reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the Earth.
A short circuit is an electrical circuit that allows a current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circuit. The opposite of a short circuit is an open circuit, which is an infinite resistance between two nodes.
A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by current in excess of that which the equipment can safely carry (overcurrent). Its basic function is to interrupt current flow to protect equipment and to prevent fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.
A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device, more specifically a form of Earth-leakage circuit breaker, that interrupts an electrical circuit when the current passing through line and neutral conductors of a circuit is not equal, therefore indicating current leaking to ground, or to an unintended path that bypasses the protective device. The device's purpose is to reduce the severity of injury caused by an electric shock. This type of circuit interrupter cannot protect a person who touches both circuit conductors at the same time, since it then cannot distinguish normal current from that passing through a person.
A distribution board is a component of an electricity supply system that divides an electrical power feed into subsidiary circuits while providing a protective fuse or circuit breaker for each circuit in a common enclosure. Normally, a main switch, and in recent boards, one or more residual-current devices (RCDs) or residual current breakers with overcurrent protection (RCBOs) are also incorporated.
Appliance classes specify measures to prevent dangerous contact voltages on unenergized parts, such as the metallic casing, of an electronic device. In the electrical appliance manufacturing industry, the following appliance classes are defined in IEC 61140 and used to differentiate between the protective-earth connection requirements of devices.
An arc-fault circuit interrupter (AFCI) or arc-fault detection device (AFDD) is a circuit breaker that breaks the circuit when it detects the electric arcs that are a signature of loose connections in home wiring. Loose connections, which can develop over time, can sometimes become hot enough to ignite house fires. An AFCI selectively distinguishes between a harmless arc, and a potentially dangerous arc.
In an electrical system, a ground loop or earth loop occurs when two points of a circuit are intended to have the same ground reference potential but instead have a different potential between them. This is typically caused when enough current is flowing in the connection between the two ground points to produce a voltage drop and cause the two points to be at different potentials. Current may be produced in a ground loop by electromagnetic induction.
In electrical engineering, ground and neutral are circuit conductors used in alternating current (AC) electrical systems. The neutral conductor receives and returns alternating current to the supply during normal operation of the circuit; to limit the effects of leakage current from higher-voltage systems, the neutral conductor is often connected to earth ground at the point of supply. By contrast, a ground conductor is not intended to carry current for normal operation, but instead connects exposed metallic components to earth ground. A ground conductor only carries significant current if there is a circuit fault that would otherwise energize exposed conductive parts and present a shock hazard. In that case, circuit protection devices may detect a fault to a grounded metal enclosure and automatically de-energize the circuit, or may provide a warning of a ground fault.
Electrical wiring in the United Kingdom is commonly understood to be an electrical installation for operation by end users within domestic, commercial, industrial, and other buildings, and also in special installations and locations, such as marinas or caravan parks. It does not normally cover the transmission or distribution of electricity to them.
A current transformer (CT) is a type of transformer that reduces or multiplies alternating current (AC), producing a current in its secondary which is proportional to the current in its primary.
In electric power distribution, automatic circuit reclosers (ACRs) are a class of switchgear designed for use on overhead electricity distribution networks to detect and interrupt transient faults. Also known as reclosers or autoreclosers, ACRs are essentially rated circuit breakers with integrated current and voltage sensors and a protection relay, optimized for use as a protection asset. Commercial ACRs are governed by the IEC 62271-111/IEEE Std C37.60 and IEC 62271-200 standards. The three major classes of operating maximum voltage are 15.5 kV, 27 kV and 38 kV.
An earthing system or grounding system (US) connects specific parts of an electric power system with the ground, typically the equipment's conductive surface, for safety and functional purposes. The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary among countries, though most follow the recommendations of the International Electrotechnical Commission (IEC). Regulations may identify special cases for earthing in mines, in patient care areas, or in hazardous areas of industrial plants.
A test light, test lamp, voltage tester, or mains tester is a piece of electronic test equipment used to determine the presence of electricity in a piece of equipment under test. A test light is simpler and less costly than a measuring instrument such as a multimeter, and often suffices for checking for the presence of voltage on a conductor. Properly designed test lights include features to protect the user from accidental electric shock. Non-contact test lights can detect voltage on insulated conductors.
Electrical bonding is the practice of intentionally electrically connecting all exposed metal items not designed to carry electricity in a room or building as protection from electric shock. Bonding is also used to minimize electrical arcing between metal surfaces with electrical potential differences. If a failure of electrical insulation occurs, all bonded metal objects in the room will have substantially the same electrical potential, so that an occupant of the room cannot touch two objects with significantly different potentials. Even if the connection to a distant earth is lost, the occupant will be protected from dangerous potential differences.
In an electric power system, a fault or fault current is any abnormal electric current. For example, a short circuit is a fault in which a live wire touches a neutral or ground wire. An open-circuit fault occurs if a circuit is interrupted by a failure of a current-carrying wire or a blown fuse or circuit breaker. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short-circuit current of a predictable fault can be calculated for most situations. In power systems, protective devices can detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.
In electrical engineering, earth potential rise (EPR), also called ground potential rise (GPR), occurs when a large current flows to earth through an earth grid impedance. The potential relative to a distant point on the Earth is highest at the point where current enters the ground, and declines with distance from the source. Ground potential rise is a concern in the design of electrical substations because the high potential may be a hazard to people or equipment.
Stray voltage is the occurrence of electrical potential between two objects that ideally should not have any voltage difference between them. Small voltages often exist between two grounded objects in separate locations by the normal current flow in the power system. Contact voltage is a better defined term when large voltage appear as a result of a fault. Contact voltage on the enclosure of electrical equipment can appear from a fault in the electrical power system, such as a failure of insulation.
In electrical engineering, electrical safety testing is essential to make sure electrical products and installations are safe. To meet this goal, governments and various technical bodies have developed electrical safety standards. All countries have their own electrical safety standards that must be complied with. To meet to these standards, electrical products and installations must pass electrical safety tests.
An isolated ground (IG) is a ground connection to a local earth electrode from equipment where the main supply uses a different earthing arrangement, one of the common earthing arrangements used with domestic mains supplies. It is distinct from a TT earthing system where the system electrode is also part of the safety earthing and not neutral bonded. In most countries where regulation permits it, TT is preferred for such systems as conventional wiring techniques can be used. Examples where an IG may be required include radio transmitters where it is not desired for RF currents associated with the antenna and its earthing to enter the mains supply wiring, and in reverse, for sensitive apparatus that should be protected from supply borne interference. Great care has to be taken to maintain system safety with such systems, and each case has to be carefully considered.