Disconnector

Last updated
RNDZ-1-110.jpg
Masttrenner Koessnach Detail.JPG
A high-voltage (left) and a medium-voltage disconnector (right)

In electrical engineering, a disconnector, disconnect switch or isolator switch is a type of switching device with visible contacts, used to ensure that an electrical circuit is completely de-energized for service or maintenance. They are often found in electrical distribution and industrial applications, where machinery must have its source of driving power removed for adjustment or repair. Disconnectors can be operated manually or by a motor, and may be paired with an earthing switch to ground the portion that has been isolated from the system for ensuring the safety of equipment and the personnel working on it.

Contents

High-voltage disconnectors are used in electrical substations to allow isolation of apparatus such as circuit breakers, transformers, and transmission lines, for maintenance. The disconnector is usually not intended for normal control of the circuit, but only for safety isolation. Unlike load switches and circuit breakers, disconnectors lack a mechanism for suppression of electric arcs which occur when conductors carrying high currents are mechanically interrupted. Thus, they are off-load devices, with very low breaking capacity, intended to be opened only after the current has been interrupted by some other control device. Safety regulations of the utility must prevent any attempt to open the disconnector while it supplies a circuit. Standards in some countries for safety may require either local motor isolators or lockable handles (which can be padlocked).

IEC standard 62271-102 defines the functionality and features of a disconnector.

Disconnectors have provisions for a lockout-tagout so that inadvertent operation is not possible. In high-voltage or complex systems, these locks may be part of a trapped-key interlock system to ensure proper sequence of operation. In some designs, the disconnector has the additional ability to earth the isolated circuit thereby providing additional safety. Such an arrangement would apply to circuits that inter-connect power distribution systems where both ends of the circuit need to be isolated.

Types of disconnectors

Pantograph disconnectors for 220kV. Yellow painting allows recognition of their state Umspannwerk-Hoheneck Scheren-Trennschalter.jpg
Pantograph disconnectors for 220kV. Yellow painting allows recognition of their state

Disconnectors can be classified into various types based upon their constructional features and mounting arrangement. The major types of disconnectors are:

These are selected based upon the sub-station layout, clearances available and space constraints.

Switch disconnector

A switch disconnector combines the properties of a disconnector and a load switch, [1] so it provides the safety isolation function while being able to make and break nominal currents.

Integrated disconnecting switch

In a disconnecting circuit breaker the disconnectors are integrated in the breaking chamber, which eliminates the need for separate disconnectors. The intention of this combined device is to decrease maintenance and increase availability and reliability. The usage of this device instead of a disconnector is limited due to the fact that the open gap is not clearly visible and many doubts in term of safety arise during maintenance activities. Where it is adopted the earthing switch must be used and the performance must be increased by the typical value.

The open-air disconnecting switches typically need maintenance every five years (every two years under very polluted conditions), while circuit breakers have maintenance intervals of 15 years. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Relay</span> Electrically-operated switch

A relay is an electrically operated switch. It consists of a set of input terminals for a single or multiple control signals, and a set of operating contact terminals. The switch may have any number of contacts in multiple contact forms, such as make contacts, break contacts, or combinations thereof.

In electrical engineering, a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit, interrupting the electric current or diverting it from one conductor to another. The most common type of switch is an electromechanical device consisting of one or more sets of movable electrical contacts connected to external circuits. When a pair of contacts is touching current can pass between them, while when the contacts are separated no current can flow.

<span class="mw-page-title-main">Circuit breaker</span> Automatic circuit protection device

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by overcurrent. Its basic function is to interrupt current flow to protect equipment and to prevent the risk of fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

<span class="mw-page-title-main">Electrical substation</span> Part of an electrical transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.

<span class="mw-page-title-main">Residual-current device</span> Electrical safety device used in household wiring

A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device that quickly breaks an electrical circuit with leakage current to ground. It is to protect equipment and to reduce the risk of serious harm from an ongoing electric shock. Injury may still occur in some cases, for example if a human receives a brief shock before the electrical circuit is isolated, falls after receiving a shock, or if the person touches both conductors at the same time.

<span class="mw-page-title-main">Earth-leakage circuit breaker</span> Electrical safety device

An earth-leakage circuit breaker (ELCB) is a safety device used in electrical installations with high Earth impedance to prevent shock. It detects small stray voltages on the metal enclosures of electrical equipment, and interrupts the circuit if a dangerous voltage is detected. Once widely used, more recent installations instead use residual-current devices which instead detect leakage current directly.

<span class="mw-page-title-main">Isolation transformer</span> Electrical component

An isolation transformer is a transformer used to transfer electrical power from a source of alternating current (AC) power to some equipment or device while isolating the powered device from the power source, usually for safety reasons or to reduce transients and harmonics. Isolation transformers provide galvanic isolation; no conductive path is present between source and load. This isolation is used to protect against electric shock, to suppress electrical noise in sensitive devices, or to transfer power between two circuits which must not be connected. A transformer sold for isolation is often built with special insulation between primary and secondary, and is specified to withstand a high voltage between windings.

<span class="mw-page-title-main">Fuse (electrical)</span> Electrical safety device that provides overcurrent protection

In electronics and electrical engineering, a fuse is an electrical safety device that operates to provide overcurrent protection of an electrical circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, thereby stopping or interrupting the current. It is a sacrificial device; once a fuse has operated, it is an open circuit, and must be replaced or rewired, depending on its type.

Electrical wiring in the United Kingdom is commonly understood to be an electrical installation for operation by end users within domestic, commercial, industrial, and other buildings, and also in special installations and locations, such as marinas or caravan parks. It does not normally cover the transmission or distribution of electricity to them.

The prospective short-circuit current (PSCC), available fault current, or short-circuit making current is the highest electric current which can exist in a particular electrical system under short-circuit conditions. It is determined by the voltage and impedance of the supply system. It is of the order of a few thousand amperes for a standard domestic mains electrical installation, but may be as low as a few milliamperes in a separated extra-low voltage (SELV) system or as high as hundreds of thousands of amps in large industrial power systems.

<span class="mw-page-title-main">Switchgear</span> Control gear of an electric power system

In an electric power system, a switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

An earthing system or grounding system (US) connects specific parts of an electric power system with the ground, typically the Earth's conductive surface, for safety and functional purposes. The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary among countries, though most follow the recommendations of the International Electrotechnical Commission (IEC). Regulations may identify special cases for earthing in mines, in patient care areas, or in hazardous areas of industrial plants.

<span class="mw-page-title-main">Lockout–tagout</span> Safe isolation of dangerous equipment during maintenance or testing

Lock out, tag out (LOTO) is a safety procedure used to ensure that dangerous equipment is properly shut off and not able to be started up again prior to the completion of maintenance or repair work. It requires that hazardous energy sources be "isolated and rendered inoperative" before work is started on the equipment in question. The isolated power sources are then locked and a tag is placed on the lock identifying the worker and reason the LOTO is placed on it. The worker then holds the key for the lock, ensuring that only they can remove the lock and start the equipment. This prevents accidental startup of equipment while it is in a hazardous state or while a worker is in direct contact with it.

<span class="mw-page-title-main">Transfer switch</span> Type of electrical switch

A transfer switch is an electrical switch that switches a load between two sources. Some transfer switches are manual, in that an operator effects the transfer by throwing a switch, while others are automatic and trigger when they sense one of the sources has lost or gained power.

Power system protection is a branch of electrical power engineering that deals with the protection of electrical power systems from faults through the disconnection of faulted parts from the rest of the electrical network. The objective of a protection scheme is to keep the power system stable by isolating only the components that are under fault, whilst leaving as much of the network as possible in operation. The devices that are used to protect the power systems from faults are called protection devices.

<span class="mw-page-title-main">Galvanic isolation</span> Isolating sections of electrical systems

Galvanic isolation is a principle of isolating functional sections of electrical systems to prevent current flow; no direct conduction path is permitted.

<span class="mw-page-title-main">High-voltage switchgear</span>

High voltage switchgear is any switchgear used to connect or disconnect a part of a high-voltage power system. This equipment is essential for the protection and safe operation, without interruption, of a high voltage power system, and is important because it is directly linked to the quality of the electricity supply.

<span class="mw-page-title-main">Electric power system</span> Network of electrical component deployed to generate, transmit & distribute electricity

An electric power system is a network of electrical components deployed to supply, transfer, and use electric power. An example of a power system is the electrical grid that provides power to homes and industries within an extended area. The electrical grid can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centers to the load centers, and the distribution system that feeds the power to nearby homes and industries.

The DC distribution system has been proposed, as a replacement for the present AC power distribution system for ships with electric propulsion.

<span class="mw-page-title-main">Vacuum interrupter</span>

In electrical engineering, a vacuum interrupter is a switch which uses electrical contacts in a vacuum. It is the core component of medium-voltage circuit-breakers, generator circuit-breakers, and high-voltage circuit-breakers. Separation of the electrical contacts results in a metal vapour arc, which is quickly extinguished. Vacuum interrupters are widely used in utility power transmission systems, power generation unit, and power-distribution systems for railways, arc furnace applications, and industrial plants.

References

  1. Edvard Csanyi (2014-06-20). "Differences between disconnectors, load switches, switch disconnectors and circuit breakers". Electrical Engineering Portal. Retrieved 21 January 2016.
  2. "Applications of Disconnecting Circuit Breakers, Michael Faxå, p. 1-2" (PDF). Archived from the original (PDF) on 16 May 2013. Retrieved 11 July 2013.