Cooling tower

Last updated

A typical evaporative, forced draft open-loop cooling tower rejecting heat from the condenser water loop of an industrial chiller unit Evaporative Cooling Tower.jpg
A typical evaporative, forced draft open-loop cooling tower rejecting heat from the condenser water loop of an industrial chiller unit
Natural draft wet cooling hyperboloid towers at Didcot Power Station (UK) Didcot power station cooling tower zootalures.jpg
Natural draft wet cooling hyperboloid towers at Didcot Power Station (UK)
Forced draft wet cooling towers (height: 34 meters) and natural draft wet cooling tower (height: 122 meters) in Westphalia, Germany Power station Westfalen. Cooling towers.jpg
Forced draft wet cooling towers (height: 34 meters) and natural draft wet cooling tower (height: 122 meters) in Westphalia, Germany
Natural draft wet cooling tower in Dresden (Germany) Cooling tower power station Dresden.jpg
Natural draft wet cooling tower in Dresden (Germany)

A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove heat and cool the working fluid to near the wet-bulb air temperature or, in the case of dry cooling towers, rely solely on air to cool the working fluid to near the dry-bulb air temperature using radiators.

Contents

Common applications include cooling the circulating water used in oil refineries, petrochemical and other chemical plants, thermal power stations, nuclear power stations and HVAC systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are natural draft and induced draft cooling towers.

Cooling towers vary in size from small roof-top units to very large hyperboloid structures that can be up to 200 metres (660 ft) tall and 100 metres (330 ft) in diameter, or rectangular structures that can be over 40 metres (130 ft) tall and 80 metres (260 ft) long. Hyperboloid cooling towers are often associated with nuclear power plants, [1] although they are also used in some coal-fired plants and to some extent in some large chemical and other industrial plants. The steam turbine is what necessitates the cooling tower. Although these large towers are very prominent, the vast majority of cooling towers are much smaller, including many units installed on or near buildings to discharge heat from air conditioning. Cooling towers are also often thought to emit smoke or harmful fumes by the general public, when in reality the emissions from those towers mostly do not contribute to carbon footprint, and consist solely of water vapor. [2] [3]

History

A 1902 engraving of "Barnard's fanless self-cooling tower", an early large evaporative cooling tower that relied on natural draft and open sides rather than a fan; water to be cooled was sprayed from the top onto the radial pattern of vertical wire-mesh mats. Barnard's fanless self-cooling tower.jpg
A 1902 engraving of "Barnard's fanless self-cooling tower", an early large evaporative cooling tower that relied on natural draft and open sides rather than a fan; water to be cooled was sprayed from the top onto the radial pattern of vertical wire-mesh mats.

Cooling towers originated in the 19th century through the development of condensers for use with the steam engine. [4] Condensers use relatively cool water, via various means, to condense the steam coming out of the cylinders or turbines. This reduces the back pressure, which in turn reduces the steam consumption, and thus the fuel consumption, while at the same time increasing power and recycling boiler-water. [5] However the condensers require an ample supply of cooling water, without which they are impractical. [6] [7] While water usage is not an issue with marine engines, it forms a significant limitation for many land-based systems.[ citation needed ]

By the turn of the 20th century, several evaporative methods of recycling cooling water were in use in areas lacking an established water supply, as well as in urban locations where municipal water mains may not be of sufficient supply; reliable in times of demand; or otherwise adequate to meet cooling needs. [4] [7] In areas with available land, the systems took the form of cooling ponds; in areas with limited land, such as in cities, they took the form of cooling towers. [6] [8]

These early towers were positioned either on the rooftops of buildings or as free-standing structures, supplied with air by fans or relying on natural airflow. [6] [8] An American engineering textbook from 1911 described one design as "a circular or rectangular shell of light plate—in effect, a chimney stack much shortened vertically (20 to 40 ft. high) and very much enlarged laterally. At the top is a set of distributing troughs, to which the water from the condenser must be pumped; from these it trickles down over "mats" made of wooden slats or woven wire screens, which fill the space within the tower." [8]

Van Iterson cooling tower, 1918 Staatsmijn Emma Koeltoren III - Brunssum - 20260911 - RCE.jpg
Van Iterson cooling tower, 1918

A hyperboloid cooling tower was patented by the Dutch engineers Frederik van Iterson and Gerard Kuypers in the Netherlands on August 16, 1916. [9] The first hyperboloid reinforced concrete cooling towers were build by the Dutch State Mine (DSM) Emma in 1918 in Heerlen. [10] The first ones in the United Kingdom were build in 1924 at Lister Drive power station in Liverpool, England. [11] On both locations they were build to cool water used at a coal-fired electrical power station.

According to Gas Technology Institute (GTI) report, the indirect dew point evaporative cooling Maisotsenko Cycle (M-Cycle) is a theoretically sound method of reducing a fluid to dew point temperature which is lower than its wet bulb temperature. The M-cycle utilizes the psychrometric energy (or the potential energy) available from the latent heat of water evaporating into the air. While its current manifestation is as the M-Cycle HMX for air conditioning, through engineering design this cycle could be applied as a heat and moisture recovery device for combustion devices, cooling towers, condensers, and other processes involving humid gas streams.

The consumption of cooling water by inland processing and power plants is estimated to reduce power availability for the majority of thermal power plants by 2040–2069. [12]

In 2021, researchers presented a method for steam recapture. The steam is charged using an ion beam, and then captured in a wire mesh of opposite charge. The water's purity exceeded EPA potability standards. [13]

Classification by use

Heating, ventilation and air conditioning (HVAC)

Two HVAC cooling towers on the rooftop of a shopping center (Darmstadt, Hesse, Germany) Loop Shopping Centre Exterior I.jpg
Two HVAC cooling towers on the rooftop of a shopping center (Darmstadt, Hesse, Germany)
FRP cooling tower installed on roof top Induced Draft Cooling Tower for HVAC.jpg
FRP cooling tower installed on roof top
Cell of a cross-flow type cooling tower with fill material, and circulating water visible Cooling Tower Fill Material.jpg
Cell of a cross-flow type cooling tower with fill material, and circulating water visible

An HVAC (heating, ventilating, and air conditioning) cooling tower is used to dispose of ("reject") unwanted heat from a chiller. Liquid-cooled chillers are normally more energy efficient than air-cooled chillers due to heat rejection to tower water at or near wet-bulb temperatures. Air-cooled chillers must reject heat at the higher dry-bulb temperature, and thus have a lower average reverse-Carnot cycle effectiveness. In areas with a hot climate, large office buildings, hospitals, and schools typically use one or more cooling towers as part of their air conditioning systems. Generally, industrial cooling towers are much larger than HVAC towers. HVAC use of a cooling tower pairs the cooling tower with a liquid-cooled chiller or liquid-cooled condenser. A ton of air-conditioning is defined as the removal of 12,000 British thermal units per hour (3.5 kW). The equivalent ton on the cooling tower side actually rejects about 15,000 British thermal units per hour (4.4 kW) due to the additional waste heat-equivalent of the energy needed to drive the chiller's compressor. This equivalent ton is defined as the heat rejection in cooling 3 US gallons per minute (11 litres per minute) or 1,500 pounds per hour (680 kg/h) of water by 10 °F (5.6 °C), which amounts to 15,000 British thermal units per hour (4.4 kW), assuming a chiller coefficient of performance (COP) of 4.0. [14] This COP is equivalent to an energy efficiency ratio (EER) of 14.

Cooling towers are also used in HVAC systems that have multiple water source heat pumps that share a common piping water loop. In this type of system, the water circulating inside the water loop removes heat from the condenser of the heat pumps whenever the heat pumps are working in the cooling mode, then the externally mounted cooling tower is used to remove heat from the water loop and reject it to the atmosphere. By contrast, when the heat pumps are working in heating mode, the condensers draw heat out of the loop water and reject it into the space to be heated. When the water loop is being used primarily to supply heat to the building, the cooling tower is normally shut down (and may be drained or winterized to prevent freeze damage), and heat is supplied by other means, usually from separate boilers.

Industrial cooling towers

Open loop Cooling Tower for DG Set.jpg
Industrial cooling towers for a power plant Cenk Endustri Field Erected Industrial Cooling Tower.JPG
Industrial cooling towers for a power plant
Industrial cooling towers for fruit processing Industrial Counterflow Cooling Towers.jpg
Industrial cooling towers for fruit processing

Industrial cooling towers can be used to remove heat from various sources such as machinery or heated process material. The primary use of large, industrial cooling towers is to remove the heat absorbed in the circulating cooling water systems used in power plants, petroleum refineries, petrochemical plants, natural gas processing plants, food processing plants, semi-conductor plants, and for other industrial facilities such as in condensers of distillation columns, for cooling liquid in crystallization, etc. [15] The circulation rate of cooling water in a typical 700 MWth coal-fired power plant with a cooling tower amounts to about 71,600 cubic metres an hour (315,000 US gallons per minute) [16] and the circulating water requires a supply water make-up rate of perhaps 5 percent (i.e., 3,600 cubic metres an hour, equivalent to one cubic metre every second).

If that same plant had no cooling tower and used once-through cooling water, it would require about 100,000 cubic metres an hour [17] A large cooling water intake typically kills millions of fish and larvae annually, as the organisms are impinged on the intake screens. [18] A large amount of water would have to be continuously returned to the ocean, lake or river from which it was obtained and continuously re-supplied to the plant. Furthermore, discharging large amounts of hot water may raise the temperature of the receiving river or lake to an unacceptable level for the local ecosystem. Elevated water temperatures can kill fish and other aquatic organisms (see thermal pollution ), or can also cause an increase in undesirable organisms such as invasive species of zebra mussels or algae.

A cooling tower serves to dissipate the heat into the atmosphere instead, so that wind and air diffusion spreads the heat over a much larger area than hot water can distribute heat in a body of water. Evaporative cooling water cannot be used for subsequent purposes (other than rain somewhere), whereas surface-only cooling water can be re-used. Some coal-fired and nuclear power plants located in coastal areas do make use of once-through ocean water. But even there, the offshore discharge water outlet requires very careful design to avoid environmental problems.

Petroleum refineries may also have very large cooling tower systems. A typical large refinery processing 40,000 metric tonnes of crude oil per day (300,000 barrels (48,000 m3) per day) circulates about 80,000 cubic metres of water per hour through its cooling tower system.

The world's tallest cooling tower is the 210 metres (690 ft) tall cooling tower of the Pingshan II Power Station in Huaibei, Anhui Province, China. [19]

Field erected cooling tower Field erected cooling tower.JPG
Field erected cooling tower

Classification by build

Package type

Field-erected cooling towers Field Errected Cooling Towers.jpg
Field-erected cooling towers
Brotep-Eco cooling tower Brotep Eco coolin tower.jpg
Brotep-Eco cooling tower
Package cooling tower Package type cooling tower.JPG
Package cooling tower

These types of cooling towers are factory preassembled, and can be simply transported on trucks, as they are compact machines. The capacity of package type towers is limited and, for that reason, they are usually preferred by facilities with low heat rejection requirements such as food processing plants, textile plants, some chemical processing plants, or buildings like hospitals, hotels, malls, automotive factories, etc.

Due to their frequent use in or near residential areas, sound level control is a relatively more important issue for package type cooling towers.

Field erected type

Facilities such as power plants, steel processing plants, petroleum refineries, or petrochemical plants usually install field erected type cooling towers due to their greater capacity for heat rejection. Field erected towers are usually much larger in size compared to the package type cooling towers.

A typical field erected cooling tower has a pultruded fiber-reinforced plastic (FRP) structure, FRP cladding, a mechanical unit for air draft, and a drift eliminator.

Heat transfer methods

With respect to the heat transfer mechanism employed, the main types are:

In a wet cooling tower (or open circuit cooling tower), the warm water can be cooled to a temperature lower than the ambient air dry-bulb temperature, if the air is relatively dry (see dew point and psychrometrics). As ambient air is drawn past a flow of water, a small portion of the water evaporates, and the energy required to evaporate that portion of the water is taken from the remaining mass of water, thus reducing its temperature. Approximately 2,300 kilojoules per kilogram (970 BTU/lb) of heat energy is absorbed for the evaporated water. Evaporation results in saturated air conditions, lowering the temperature of the water processed by the tower to a value close to wet-bulb temperature, which is lower than the ambient dry-bulb temperature, the difference determined by the initial humidity of the ambient air.

To achieve better performance (more cooling), a medium called fill is used to increase the surface area and the time of contact between the air and water flows. Splash fill consists of material placed to interrupt the water flow causing splashing. Film fill is composed of thin sheets of material (usually PVC) upon which the water flows. Both methods create increased surface area and time of contact between the fluid (water) and the gas (air), to improve heat transfer.

Air flow generation methods

Access stairs at the base of a massive hyperboloid cooling tower give a sense of its scale (UK). Stairway to nowhere^ - geograph.org.uk - 455003.jpg
Access stairs at the base of a massive hyperboloid cooling tower give a sense of its scale (UK).

With respect to drawing air through the tower, there are three types of cooling towers:

Hyperboloid cooling tower

On 16 August 1916, [21] Frederik van Iterson took out the UK patent (108,863) for Improved Construction of Cooling Towers of Reinforced Concrete . [22] The patent was filed on 9 August 1917, and published on 11 April 1918. In 1918, DSM built the first hyperboloid natural-draft cooling tower at the Staatsmijn Emma, to his design.

Hyperboloid (sometimes incorrectly known as hyperbolic) cooling towers have become the design standard for all natural-draft cooling towers because of their structural strength and minimum usage of material. [23] [24] [25] [26] The hyperboloid shape also aids in accelerating the upward convective air flow, improving cooling efficiency. [27] [28] These designs are popularly associated with nuclear power plants. However, this association is misleading, as the same kind of cooling towers are often used at large coal-fired power plants and some geothermal plants as well. The steam turbine is what necessitates the cooling tower. Conversely, not all nuclear power plants have cooling towers, and some instead cool their working fluid with lake, river or ocean water.

Categorization by air-to-water flow

Crossflow

Crossflow diagram.svg
Mechanical draft crossflow cooling tower used in an HVAC application Factory assembled crossflow.jpg
Mechanical draft crossflow cooling tower used in an HVAC application
Package crossflow cooling tower Crossflow cooling tower.jpg
Package crossflow cooling tower

Typically lower initial and long-term cost, mostly due to pump requirements.

Crossflow is a design in which the airflow is directed perpendicular to the water flow (see diagram at left). Airflow enters one or more vertical faces of the cooling tower to meet the fill material. Water flows (perpendicular to the air) through the fill by gravity. The air continues through the fill and thus past the water flow into an open plenum volume. Lastly, a fan forces the air out into the atmosphere.

A distribution or hot water basin consisting of a deep pan with holes or nozzles in its bottom is located near the top of a crossflow tower. Gravity distributes the water through the nozzles uniformly across the fill material. Cross Flow V/s Counter Flow

Advantages of the crossflow design:

Disadvantages of the crossflow design:

Counterflow

Showers inside cooling tower Cooling tower - showers.jpg
Showers inside cooling tower
Counterflow diagram.svg
Forced-draft counter-flow package-type cooling tower Crossflow Cooling tower.jpg
Forced-draft counter-flow package-type cooling tower

In a counterflow design, the air flow is directly opposite to the water flow (see diagram at left). Air flow first enters an open area beneath the fill media, and is then drawn up vertically. The water is sprayed through pressurized nozzles near the top of the tower, and then flows downward through the fill, opposite to the air flow.


Advantages of the counterflow design:


Disadvantages of the counterflow design:

Common aspects

Common aspects of both designs:

Both crossflow and counterflow designs can be used in natural draft and in mechanical draft cooling towers.

Wet cooling tower material balance

Quantitatively, the material balance around a wet, evaporative cooling tower system is governed by the operational variables of make-up volumetric flow rate, evaporation and windage losses, draw-off rate, and the concentration cycles. [29] [30]

In the adjacent diagram, water pumped from the tower basin is the cooling water routed through the process coolers and condensers in an industrial facility. The cool water absorbs heat from the hot process streams which need to be cooled or condensed, and the absorbed heat warms the circulating water (C). The warm water returns to the top of the cooling tower and trickles downward over the fill material inside the tower. As it trickles down, it contacts ambient air rising up through the tower either by natural draft or by forced draft using large fans in the tower. That contact causes a small amount of the water to be lost as windage or drift (W) and some of the water (E) to evaporate. The heat required to evaporate the water is derived from the water itself, which cools the water back to the original basin water temperature and the water is then ready to recirculate. The evaporated water leaves its dissolved salts behind in the bulk of the water which has not been evaporated, thus raising the salt concentration in the circulating cooling water. To prevent the salt concentration of the water from becoming too high, a portion of the water is drawn off or blown down (D) for disposal. Fresh water make-up (M) is supplied to the tower basin to compensate for the loss of evaporated water, the windage loss water and the draw-off water.

Fan-induced draft, counter-flow cooling tower CoolingTower.png
Fan-induced draft, counter-flow cooling tower

Using these flow rates and concentration dimensional units:

M= Make-up water in m3/h
C= Circulating water in m3/h
D= Draw-off water in m3/h
E= Evaporated water in m3/h
W= Windage loss of water in m3/h
X= Concentration in ppmw (of any completely soluble salts ... usually chlorides)
XM= Concentration of chlorides in make-up water (M), in ppmw
XC= Concentration of chlorides in circulating water (C), in ppmw
Cycles= Cycles of concentration = XC / XM (dimensionless)
ppmw= parts per million by weight

A water balance around the entire system is then: [30]

M = E + D + W

Since the evaporated water (E) has no salts, a chloride balance around the system is: [30]

MXM = DXC + WXC = XC(D + W)

and, therefore: [30]

From a simplified heat balance around the cooling tower:

where: 
HV= latent heat of vaporization of water = 2260 kJ / kg
ΔT= water temperature difference from tower top to tower bottom, in °C
cp= specific heat of water = 4.184 kJ / (kg°C)

Windage (or drift) losses (W) is the amount of total tower water flow that is entrained in the flow of air to the atmosphere. From large-scale industrial cooling towers, in the absence of manufacturer's data, it may be assumed to be:

W = 0.3 to 1.0 percent of C for a natural draft cooling tower without windage drift eliminators
W = 0.1 to 0.3 percent of C for an induced draft cooling tower without windage drift eliminators
W = about 0.005 percent of C (or less) if the cooling tower has windage drift eliminators
W = about 0.0005 percent of C (or less) if the cooling tower has windage drift eliminators and uses sea water as make-up water.

Cycles of concentration

Cycle of concentration represents the accumulation of dissolved minerals in the recirculating cooling water. Discharge of draw-off (or blowdown) is used principally to control the buildup of these minerals.

The chemistry of the make-up water, including the amount of dissolved minerals, can vary widely. Make-up waters low in dissolved minerals such as those from surface water supplies (lakes, rivers etc.) tend to be aggressive to metals (corrosive). Make-up waters from ground water supplies (such as wells) are usually higher in minerals, and tend to be scaling (deposit minerals). Increasing the amount of minerals present in the water by cycling can make water less aggressive to piping; however, excessive levels of minerals can cause scaling problems.

Relationship between cycles of concentration and flow rates in a cooling tower Cycles-Of-Concentration.png
Relationship between cycles of concentration and flow rates in a cooling tower

As the cycles of concentration increase, the water may not be able to hold the minerals in solution. When the solubility of these minerals have been exceeded they can precipitate out as mineral solids and cause fouling and heat exchange problems in the cooling tower or the heat exchangers. The temperatures of the recirculating water, piping and heat exchange surfaces determine if and where minerals will precipitate from the recirculating water. Often a professional water treatment consultant will evaluate the make-up water and the operating conditions of the cooling tower and recommend an appropriate range for the cycles of concentration. The use of water treatment chemicals, pretreatment such as water softening, pH adjustment, and other techniques can affect the acceptable range of cycles of concentration.

Concentration cycles in the majority of cooling towers usually range from 3 to 7. In the United States, many water supplies use well water which has significant levels of dissolved solids. On the other hand, one of the largest water supplies, for New York City, has a surface rainwater source quite low in minerals; thus cooling towers in that city are often allowed to concentrate to 7 or more cycles of concentration.

Since higher cycles of concentration represent less make-up water, water conservation efforts may focus on increasing cycles of concentration. [31] Highly treated recycled water may be an effective means of reducing cooling tower consumption of potable water, in regions where potable water is scarce. [32]

Maintenance

Clean visible dirt & debris from the cold water basin and surfaces with any visible biofilm (i.e., slime).[ citation needed ]

Disinfectant and other chemical levels in cooling towers and hot tubs should be continuously maintained and regularly monitored. [33]

Regular checks of water quality (specifically the aerobic bacteria levels) using dipslides should be taken as the presence of other organisms can support legionella by producing the organic nutrients that it needs to thrive.[ citation needed ]

Water treatment

Besides treating the circulating cooling water in large industrial cooling tower systems to minimize scaling and fouling, the water should be filtered to remove particulates, and also be dosed with biocides and algaecides to prevent growths that could interfere with the continuous flow of the water. [29] Under certain conditions, a biofilm of micro-organisms such as bacteria, fungi and algae can grow very rapidly in the cooling water, and can reduce the heat transfer efficiency of the cooling tower. Biofilm can be reduced or prevented by using chlorine or other chemicals. A normal industrial practice is to use two biocides, such as oxidizing and non-oxidizing types to complement each other's strengths and weaknesses, and to ensure a broader spectrum of attack. In most cases, a continual low level oxidizing biocide is used, then alternating to a periodic shock dose of non-oxidizing biocides.[ citation needed ]

Algaecides and biocides

Algaecides, as their name might suggest, is intended to kill algae and other related plant-like microbes in the water. Biocides can reduce other living matter that remains, improving the system and keeping clean and efficient water usage in a cooling tower. One of the most common options when it comes to biocides for your water is bromine. [34]

Scale inhibitors

Among the issues that cause the most damage and strain to a water tower’s systems is scaling. When an unwanted material or contaminant in the water builds up in a certain area, it can create deposits that grow over time. This can cause issues ranging from the narrowing of pipes to total blockages and equipment failures. [34]

The water consumption of the cooling tower comes from Drift, Bleed-off, Evaporation loss, The water that is immediately replenished into the cooling tower due to loss is called Make-up Water. The function of make-up water is to make machinery and equipment run safely and stably.[ citation needed ]

Legionnaires' disease

Legionella pneumophila (5000 x magnification) Legionella pneumophila (SEM) 2.jpg
Legionella pneumophila (5000 × magnification)
A multitude of microscopic organisms such as bacterial colonies, fungi, and algae can easily thrive within the moderately high temperatures present inside a cooling tower. Cooling Tower Algal Mat.jpg
A multitude of microscopic organisms such as bacterial colonies, fungi, and algae can easily thrive within the moderately high temperatures present inside a cooling tower.

Another very important reason for using biocides in cooling towers is to prevent the growth of Legionella , including species that cause legionellosis or Legionnaires' disease, most notably L. pneumophila, [35] or Mycobacterium avium . [36] The various Legionella species are the cause of Legionnaires' disease in humans and transmission is via exposure to aerosols—the inhalation of mist droplets containing the bacteria. Common sources of Legionella include cooling towers used in open recirculating evaporative cooling water systems, domestic hot water systems, fountains, and similar disseminators that tap into a public water supply. Natural sources include freshwater ponds and creeks. [37] [38]

French researchers found that Legionella bacteria travelled up to 6 kilometres (3.7 mi) through the air from a large contaminated cooling tower at a petrochemical plant in Pas-de-Calais, France. That outbreak killed 21 of the 86 people who had a laboratory-confirmed infection. [39]

Drift (or windage) is the term for water droplets of the process flow allowed to escape in the cooling tower discharge. Drift eliminators are used in order to hold drift rates typically to 0.001–0.005% of the circulating flow rate. A typical drift eliminator provides multiple directional changes of airflow to prevent the escape of water droplets. A well-designed and well-fitted drift eliminator can greatly reduce water loss and potential for Legionella or water treatment chemical exposure. Also, about every six months, inspect the conditions of the drift eliminators making sure there are no gaps to allow the free flow of dirt. [40]

The US Centers for Disease Control and Prevention (CDC) does not recommend that health-care facilities regularly test for the Legionella pneumophila bacteria. Scheduled microbiologic monitoring for Legionella remains controversial because its presence is not necessarily evidence of a potential for causing disease. The CDC recommends aggressive disinfection measures for cleaning and maintaining devices known to transmit Legionella, but does not recommend regularly-scheduled microbiologic assays for the bacteria. However, scheduled monitoring of potable water within a hospital might be considered in certain settings where persons are highly susceptible to illness and mortality from Legionella infection (e.g. hematopoietic stem cell transplantation units, or solid organ transplant units). Also, after an outbreak of legionellosis, health officials agree that monitoring is necessary to identify the source and to evaluate the efficacy of biocides or other prevention measures. [41] [ failed verification ]

Studies have found Legionella in 40% to 60% of cooling towers. [42]

Terminology

Fill plates at the bottom of the Iru Power Plant cooling tower (Estonia). Tower is shut down, revealing numerous water spray heads. Floor of cooling tower, Iru Power Plant, 2.jpg
Fill plates at the bottom of the Iru Power Plant cooling tower (Estonia). Tower is shut down, revealing numerous water spray heads.

Fog production

Fog produced by Eggborough power station Clouds, natural and otherwise - geograph.org.uk - 778331.jpg
Fog produced by Eggborough power station

Under certain ambient conditions, plumes of water vapor can be seen rising out of the discharge from a cooling tower, and can be mistaken as smoke from a fire. If the outdoor air is at or near saturation, and the tower adds more water to the air, saturated air with liquid water droplets can be discharged, which is seen as fog. This phenomenon typically occurs on cool, humid days, but is rare in many climates. Fog and clouds associated with cooling towers can be described as homogenitus, as with other clouds of man-made origin, such as contrails and ship tracks. [46]

This phenomenon can be prevented by decreasing the relative humidity of the saturated discharge air. For that purpose, in hybrid towers, saturated discharge air is mixed with heated low relative humidity air. Some air enters the tower above drift eliminator level, passing through heat exchangers. The relative humidity of the dry air is even more decreased instantly as being heated while entering the tower. The discharged mixture has a relatively lower relative humidity and the fog is invisible.[ citation needed ]

Cloud formation

Issues related to applied meteorology of cooling towers, including the assessment of the impact of cooling towers on the cloud enhancement were considered in series of models and experiments. One of the results by Haman's group indicated significant dynamic influences of the condensation trails on the surrounding atmosphere, manifested in temperature and humidity disturbances. The mechanism of these influences seemed to be associated either with the airflow over the trail as an obstacle or with vertical waves generated by the trail, often at a considerable altitude above it. [47]

Salt emission pollution

When wet cooling towers with seawater make-up are installed in various industries located in or near coastal areas, the drift of fine droplets emitted from the cooling towers contain nearly 6% sodium chloride which deposits on the nearby land areas. This deposition of sodium salts on the nearby agriculture/vegetative lands can convert them into sodic saline or sodic alkaline soils depending on the nature of the soil and enhance the sodicity of ground and surface water. The salt deposition problem from such cooling towers aggravates where national pollution control standards are not imposed or not implemented to minimize the drift emissions from wet cooling towers using seawater make-up. [48]

Respirable suspended particulate matter, of less than 10 micrometers (µm) in size, can be present in the drift from cooling towers. Larger particles above 10 µm in size are generally filtered out in the nose and throat via cilia and mucus but particulate matter smaller than 10 µm, referred to as PM10, can settle in the bronchi and lungs and cause health problems. Similarly, particles smaller than 2.5 µm, (PM2.5), tend to penetrate into the gas exchange regions of the lung, and very small particles (less than 100 nanometers) may pass through the lungs to affect other organs. Though the total particulate emissions from wet cooling towers with fresh water make-up is much less, they contain more PM10 and PM2.5 than the total emissions from wet cooling towers with sea water make-up. This is due to lesser salt content in fresh water drift (below 2,000 ppm) compared to the salt content of sea water drift (60,000 ppm). [48]

Use as a flue-gas stack

Flue gas stack inside a natural draft wet cooling tower Chimney included in cooling tower.jpg
Flue gas stack inside a natural draft wet cooling tower
Flue gas stack connection into a natural draft wet cooling tower Power station Duisburg Walsum.JPG
Flue gas stack connection into a natural draft wet cooling tower

At some modern power stations equipped with flue gas purification, such as the Großkrotzenburg Power Station and the Rostock Power Station, the cooling tower is also used as a flue-gas stack (industrial chimney), thus saving the cost of a separate chimney structure. At plants without flue gas purification, problems with corrosion may occur, due to reactions of raw flue gas with water to form acids.[ citation needed ]

Sometimes, natural draft cooling towers are constructed with structural steel in place of concrete (RCC) when the construction time of natural draft cooling tower is exceeding the construction time of the rest of the plant or the local soil is of poor strength to bear the heavy weight of RCC cooling towers or cement prices are higher at a site to opt for cheaper natural draft cooling towers made of structural steel.[ citation needed ]

Operation in freezing weather

Large hyperboloid cooling towers made of structural steel for a power plant in Kharkiv (Ukraine) Pesochin TETs5 Gradirni VizuIMG 2181.JPG
Large hyperboloid cooling towers made of structural steel for a power plant in Kharkiv (Ukraine)

Some cooling towers (such as smaller building air conditioning systems) are shut down seasonally, drained, and winterized to prevent freeze damage.

During the winter, other sites continuously operate cooling towers with 4 °C (39 °F) water leaving the tower. Basin heaters, tower draindown, and other freeze protection methods are often employed in cold climates. Operational cooling towers with malfunctions can freeze during very cold weather. Typically, freezing starts at the corners of a cooling tower with a reduced or absent heat load. Severe freezing conditions can create growing volumes of ice, resulting in increased structural loads which can cause structural damage or collapse.

To prevent freezing, the following procedures are used:

Fire hazard

Cooling towers constructed in whole or in part of combustible materials can support internal fire propagation. Such fires can become very intense, due to the high surface-volume ratio of the towers, and fires can be further intensified by natural convection or fan-assisted draft. The resulting damage can be sufficiently severe to require the replacement of the entire cell or tower structure. For this reason, some codes and standards [49] recommend that combustible cooling towers be provided with an automatic fire sprinkler system. Fires can propagate internally within the tower structure when the cell is not in operation (such as for maintenance or construction), and even while the tower is in operation, especially those of the induced-draft type, because of the existence of relatively dry areas within the towers. [50]

Structural stability

Being very large structures, cooling towers are susceptible to wind damage, and several spectacular failures have occurred in the past. At Ferrybridge power station on 1 November 1965, the station was the site of a major structural failure, when three of the cooling towers collapsed owing to vibrations in 85 mph (137 km/h) winds. [51] Although the structures had been built to withstand higher wind speeds, the shape of the cooling towers caused westerly winds to be funneled into the towers themselves, creating a vortex. Three out of the original eight cooling towers were destroyed, and the remaining five were severely damaged. The towers were later rebuilt and all eight cooling towers were strengthened to tolerate adverse weather conditions. Building codes were changed to include improved structural support, and wind tunnel tests were introduced to check tower structures and configuration.[ citation needed ]

See also

Related Research Articles

Ocean thermal energy conversion (OTEC) is a renewable energy technology that harnesses the temperature difference between the warm surface waters of the ocean and the cold depths to produce electricity. It is a unique form of clean energy generation that has the potential to provide a consistent and sustainable source of power. Although it has challenges to overcome, OTEC has the potential to provide a consistent and sustainable source of clean energy, particularly in tropical regions with access to deep ocean water.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Dehumidifier</span> Device which reduces humidity

A dehumidifier is an air conditioning device which reduces and maintains the level of humidity in the air. This is done usually for health or thermal comfort reasons, or to eliminate musty odor and to prevent the growth of mildew by extracting water from the air. It can be used for household, commercial, or industrial applications. Large dehumidifiers are used in commercial buildings such as indoor ice rinks and swimming pools, as well as manufacturing plants or storage warehouses. Typical air conditioning systems combine dehumidification with cooling, by operating cooling coils below the dewpoint and draining away the water that condenses.

<span class="mw-page-title-main">Cooling pond</span>

A cooling pond is a man-made body of water primarily formed for the purpose of cooling heated water and/or to store and supply cooling water to a nearby power plant or industrial facility such as a petroleum refinery, pulp and paper mill, chemical plant, steel mill or smelter.

<span class="mw-page-title-main">Water cooling</span> Method of heat removal from components and industrial equipment

Water cooling is a method of heat removal from components and industrial equipment. Evaporative cooling using water is often more efficient than air cooling. Water is inexpensive and non-toxic; however, it can contain impurities and cause corrosion.

<span class="mw-page-title-main">Evaporative cooler</span> Device that cools air through the evaporation of water

An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning systems, which use vapor-compression or absorption refrigeration cycles. Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation). This can cool air using much less energy than refrigeration. In extremely dry climates, evaporative cooling of air has the added benefit of conditioning the air with more moisture for the comfort of building occupants.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Thermal power station</span> Power plant that generates electricity from heat energy

A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.

<span class="mw-page-title-main">Absorption refrigerator</span> Refrigerator that uses a heat source

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of convenient heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.

<span class="mw-page-title-main">Wet-bulb temperature</span> Temperature read by a thermometer covered in water-soaked cloth

The wet-bulb temperature (WBT) is the temperature read by a thermometer covered in water-soaked cloth over which air is passed. At 100% relative humidity, the wet-bulb temperature is equal to the air temperature ; at lower humidity the wet-bulb temperature is lower than dry-bulb temperature because of evaporative cooling.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger.

<span class="mw-page-title-main">Thermal expansion valve</span> Component of air conditioning and refrigeration systems

A thermal expansion valve or thermostatic expansion valve is a component in vapor-compression refrigeration and air conditioning systems that controls the amount of refrigerant released into the evaporator and is intended to regulate the superheat of the refrigerant that flows out of the evaporator to a steady value. Although often described as a "thermostatic" valve, an expansion valve is not able to regulate the evaporator's temperature to a precise value. The evaporator's temperature will vary only with the evaporating pressure, which will have to be regulated through other means.

<span class="mw-page-title-main">Air conditioning</span> Cooling of air in an enclosed space

Air conditioning, often abbreviated as A/C (US) or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior environment and in some cases also strictly controlling the humidity of internal air. Air conditioning can be achieved using a mechanical 'air conditioner' or alternatively a variety of other methods, including passive cooling and ventilative cooling. Air conditioning is a member of a family of systems and techniques that provide heating, ventilation, and air conditioning (HVAC). Heat pumps are similar in many ways to air conditioners, but use a reversing valve to allow them both to heat and to cool an enclosed space.

<span class="mw-page-title-main">Chilled water</span>

Chilled water is a commodity often used to cool a building's air and equipment, especially in situations where many individual rooms must be controlled separately, such as a hotel. The chilled water can be supplied by a vendor, such as a public utility, or created at the location of the building that will use it, which has been the norm.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

<span class="mw-page-title-main">Hygroscopic cycle</span> Thermodynamic cycle converting thermal energy into mechanical power

The Hygroscopic cycle is a thermodynamic cycle converting thermal energy into mechanical power by the means of a steam turbine. It is similar to the Rankine cycle using water as the motive fluid but with the novelty of introducing salts and their hygroscopic properties for the condensation. The salts are desorbed in the boiler or steam generator, where clean steam is released and superheated in order to be expanded and generate power through the steam turbine. Boiler blowdown with the concentrated hygroscopic compounds is used thermally to pre-heat the steam turbine condensate, and as reflux in the steam-absorber.

<span class="mw-page-title-main">Spray pond</span>

A spray pond is a reservoir in which warmed water is cooled before reuse by spraying the warm water with nozzles into the cooler air. Cooling takes place by exchange of heat with the ambient air, involving both conductive heat transfer between the water droplets and the surrounding air and evaporative cooling. The primary purpose of spray pond design is thus to ensure an adequate degree of contact between the hot injection water and the ambient air, so as to facilitate the process of heat transfer.

<span class="mw-page-title-main">Turbine inlet air cooling</span>

Turbine inlet air cooling is a group of technologies and techniques consisting of cooling down the intake air of the gas turbine. The direct consequence of cooling the turbine inlet air is power output augmentation. It may also improve the energy efficiency of the system. This technology is widely used in hot climates with high ambient temperatures that usually coincides with on-peak demand period.

A circulating water plant or circulating water system is an arrangement of flow of water in fossil-fuel power station, chemical plants and in oil refineries. The system is required because various industrial process plants uses heat exchanger, and also for active fire protection measures. In chemical plants, for example in caustic soda production, water is needed in bulk quantity for preparation of brine. The circulating water system in any plant consists of a circulator pump, which develops an appropriate hydraulic head, and pipelines to circulate the water in the entire plant.

The low-temperature distillation (LTD) technology is the first implementation of the direct spray distillation (DSD) process. The first large-scale units are now in operation for desalination. The process was first developed by scientists at the University of Applied Sciences in Switzerland, focusing on low-temperature distillation in vacuum conditions, from 2000 to 2005.

References

  1. "Identifying Nuclear Reactors in Google Earth". CleanEnergy Footprints (cleanenergy.org). 31 December 2012. Archived from the original on 23 October 2014. Retrieved 19 May 2014.
  2. "Myth of cooling towers is symptomatic of global warming information shortage". Royal Society of Chemistry . 15 February 2007. Retrieved 2 March 2022.
  3. "What you need to know about nuclear cooling towers". Duke Energy | Nuclear Information Center. 24 July 2017. Retrieved 2 March 2022.
  4. 1 2 International Correspondence Schools (1902). A Textbook on Steam Engineering. Scranton, Pa.: International Textbook Co. 33–34 of Section 29:"Condensers".
  5. Croft, Terrell, ed. (1922). Steam-Engine Principles and Practice. New York: McGraw-Hill. pp. 283–286.
  6. 1 2 3 Heck, Robert Culbertson Hays (1911). The Steam Engine and Turbine: A Text-Book for Engineering Colleges. New York: D. Van Nostrand. pp. 569–570.
  7. 1 2 Watson, Egbert P. (1906). "Power plant and allied industries". The Engineer (With Which is Incorporated Steam Engineering). Chicago: Taylor Publishing Co. 43 (1): 69–72.
  8. 1 2 3 Snow, Walter B. (1908). The Steam Engine: A Practical Guide to the Construction, Operation, and care of Steam Engines, Steam Turbines, and Their Accessories. Chicago: American School of Correspondence. pp. 43–46.
  9. NL/GB Patent No. 108,863: "GB108863A Improved Construction of Cooling Towers of Reinforced Concrete". Espacenet, Patent search. Retrieved 3 December 2023.
  10. "Koeltorens van de Staatsmijn Emma". Glück Auf (in Dutch). Retrieved 3 December 2023.
  11. "Power Plant Cooling Tower Like Big Milk Bottle". Popular Mechanics. Hearst Magazines. February 1930. p. 201. ISSN   0032-4558.
  12. van Vliet, Michelle T. H.; Wiberg, David; Leduc, Sylvain; Riahi, Keywan (2016). "Power-generation system vulnerability and adaptation to changes in climate and water resources". Nature Climate Change. 6 (4): 375–380. Bibcode:2016NatCC...6..375V. doi:10.1038/nclimate2903. ISSN   1758-678X.
  13. Irving, Michael (4 August 2021). "MIT steam collector captures pure water for reuse in power plants". New Atlas. Archived from the original on 4 August 2021. Retrieved 9 August 2021.
  14. Cheremisinoff, Nicholas (2000). Handbook of Chemical Processing Equipment. Butterworth-Heinemann. p. 69. ISBN   9780080523828.
  15. U.S. Environmental Protection Agency (EPA). (1997). Profile of the Fossil Fuel Electric Power Generation Industry (Report). Washington, D.C. Document No. EPA/310-R-97-007. p. 79.
  16. Cooling System Retrofit Costs EPA Workshop on Cooling Water Intake Technologies, John Maulbetsch, Maulbetsch Consulting, May 2003
  17. Thomas J. Feeley, III, Lindsay Green, James T. Murphy, Jeffrey Hoffmann, and Barbara A. Carney (2005). "Department of Energy/Office of Fossil Energy’s Power Plant Water Management R&D Program." Archived 27 September 2007 at the Wayback Machine U.S. Department of Energy, July 2005.
  18. The Indian Point Energy Center cooling system kills over a billion fish eggs and larvae annually. McGeehan, Patrick (12 May 2015). "Fire Prompts Renewed Calls to Close the Indian Point Nuclear Plant". New York Times.
  19. "Pingshan II: the largest Cooling Tower in the world designed by Hamon". Hamon.com. Retrieved 14 January 2023.
  20. Gul, S. (18 June 2015). "Optimizing the performance of Hybrid: Induced-Forced Draft Cooling Tower". Journal of the Pakistan Institute of Chemical Engineers. 43 (2). ISSN   1813-4092.
  21. Collins, Michael (31 July 2020). "Falling giants: Britain's vanishing cooling towers". Financial Times. Retrieved 11 February 2022.
  22. GBExpired 108863,van Iterson, F. K. T.&Kuypers, G,"Improved Construction of Cooling Towers of Reinforced Concrete",published 11 April 1918
  23. Chen, HB (1976). "analysis and design of a hyperbolic (sic) cooling tower" (PDF). K-State Research Exchange . Kansas State University . Retrieved 10 February 2022. Master's Degree
  24. Anderson, Kevin (26 February 2015). "Nuclear Cooling Towers". PH241: Introduction to Nuclear Energy. Stanford University. Archived from the original on 3 May 2017. Retrieved 10 February 2022. Submitted as coursework for PH241, Stanford University, Winter 2015
  25. Lee, Kevin (24 April 2017). "How Does a Cooling Tower Work?". Sciencing. Retrieved 10 February 2022.
  26. "The inside of a cooling tower looks like no place on earth". Drax Power Station . 29 November 2018. Retrieved 10 February 2022.
  27. "Cooling Towers Explained: How does a cooling tower work?". EngineeringClicks. 13 September 2018. Retrieved 10 February 2022.
  28. "Cooling tower design and construction". designingbuildings.co.uk. Retrieved 10 February 2022.
  29. 1 2 Beychok, Milton R. (1967). Aqueous Wastes from Petroleum and Petrochemical Plants (1st ed.). John Wiley and Sons. LCCN   67019834.
  30. 1 2 3 4 Milton R. Beychok (October 1952). "How To Calculate Cooling Tower Control Variables". Petroleum Processing: 1452–1456.
  31. "Best Management Practice Cooling Tower Management". Energy.gov. Department of Energy. 30 April 2005. Retrieved 16 June 2014.
  32. San Diego County Water Authority (July 2009). "Technical Information for Cooling Towers Using Recycled Water" (PDF). www.sdcwa.org. San Diego County Water Authority. Retrieved 18 June 2014.
  33. "Developing a Water Management Program to Reduce Legionella Growth & Spread in Buildings: A Practical Guide to Implementing Industry Standards" (PDF). CDC. 5 June 2017. p. 13 {17 of 32.}
  34. 1 2 "Cooling Tower Chemicals – Robinson India". 23 July 2021. Retrieved 23 July 2021.
  35. Ryan, K.J.; Ray, C.G., eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN   978-0-8385-8529-0.
  36. Centers for Disease Control and Prevention – Emerging Infectious Diseases (page 495)
  37. Cunha, BA; Burillo, A; Bouza, E (23 January 2016). "Legionnaires' disease". Lancet. 387 (10016): 376–85. doi:10.1016/s0140-6736(15)60078-2. PMID   26231463. S2CID   28047369.
  38. "Legionella (Legionnaires' Disease and Pontiac Fever) About the Disease". CDC. 26 January 2016. Retrieved 17 June 2017.
  39. Airborne Legionella May Travel Several Kilometres (access requires free registration)
  40. "How do you Prevent Legionnaires' Disease in Cooling Towers? | Delta Cooling Towers, Inc". Manufacturers of Cooling Towers & Systems by Delta Cooling Towers, Inc. 4 June 2017.
  41. "Guidelines Library | Infection Control | CDC". www.cdc.gov. 9 September 2020.
  42. "Cooling Tower Institute, July 2008. Page 5 of 12, column 1, paragraph 3. Most professional and government agencies do not recommend testing for Legionella bacteria on a routine basis" (PDF). Archived from the original (PDF) on 13 May 2021. Retrieved 14 July 2008.
  43. William H Clark (1997), Retrofitting for energy conservation, McGraw-Hill Professional, p. 66, ISBN   978-0-07-011920-8
  44. Institute of Industrial Engineers 1981– (1982), Proceedings, Volume 1982, Institute of Industrial Engineers/American Institute of Industrial Engineers, p. 101{{citation}}: CS1 maint: numeric names: authors list (link)
  45. Mathie, Alton J. (1998), Chemical treatment for cooling water, Fairmont Press, p. 86, ISBN   978-0-88173-253-5
  46. Sutherland, Scott (23 March 2017). "Cloud Atlas leaps into 21st century with 12 new cloud types". The Weather Network. Pelmorex Media. Retrieved 24 March 2017.
  47. Haman, Krzysztof E.; Malinowski, Szymon P. (1989). "Observations of cooling tower and stack plumes and their comparison with plume model "ALINA"". Atmospheric Environment. Elsevier. 23 (6): 1223–1234.
  48. 1 2 Wet Cooling Tower Guidance For Particulate Matter, Environment Canada Archived 3 April 2015 at the Wayback Machine , Retrieved on 2013-01-29
  49. National Fire Protection Association (NFPA). NFPA 214, Standard on Water-Cooling Towers Archived 17 June 2010 at the Wayback Machine .
  50. NFPA 214, Standard on Water-Cooling Towers. Archived 17 June 2010 at the Wayback Machine Section A1.1
  51. "Ferrybridge C Power Station officially closes after 50 years". BBC News. 31 March 2016.