Demand controlled ventilation

Last updated

Demand controlled ventilation (DCV) is a feedback control method to maintain indoor air quality that automatically adjusts the ventilation rate provided to a space in response to changes in conditions such as occupant number or indoor pollutant concentration. The most common indoor pollutants monitored in DCV systems are carbon dioxide and humidity. [1] This control strategy is mainly intended to reduce the energy used by heating, ventilation, and air conditioning (HVAC) systems compared to those of buildings that use open-loop controls with constant ventilation rates.

Contents

When to use DCV

Standard HVAC system design uses fixed airflow rates to calculate the outdoor air (OA) required in a space. These airflow rates are determined by mechanical code and vary based on expected occupancy and space use. This process of supplying fixed airflow to a space ensures that sufficient OA is present in that space when it is occupied. However, such spaces are not always fully occupied; in these cases, energy is wasted as the HVAC system processes more OA than is necessary for the space occupants. Demand control ventilation is an attractive alternative to standard design in these situations because DCV systems only supply the outdoor airflow necessary to serve the occupants in a space. Therefore, the above-described energy is not wasted in this system type.  

DCV application in different system types

DCV is primarily used in variable-air-volume (VAV) systems. In DCV VAV systems, airflow to a zone is modulated to control the temperature and outdoor airflow to the space. Using the pollutant levels measured in a zone, the system’s controller sets the zone’s minimum airflow requirement to dilute the pollutant concentration. [2] Such a control sequence is supported by a pollutant sensor (e.g. carbon dioxide sensor), a variable frequency drive (VFD) on the fan supplying the zone, individual VAV boxes with reheat serving each space in the zone, and airflow measuring stations. [2]  

Research has been conducted on the application of DCV in constant-air-volume (CAV) systems. Although CAV systems cannot modulate airflow, researchers have experimented with running CAV system equipment intermittently to reduce energy consumption. [1] In this proposed system, the HVAC equipment is to run continuously when the space is occupied, then cycle on and off to maintain indoor air quality during inoccupancy. [1]

Carbon dioxide sensing

Carbon dioxide levels measured in a space are commonly used to control DCV systems because CO2 level is generally proportional to the level of bioeffluents, or occupant generated pollutants, in a space. [2] Carbon dioxide sensors monitor carbon dioxide levels in a space by strategic placement. The placement of the sensors should be able to provide an accurate representation of the space, usually placed in a return duct or on the wall. [3] As the sensor reads the increasing amount of carbon dioxide levels in a space, the ventilation increases to dilute the levels. When the space is unoccupied, the sensor reads normal levels, and continues to supply the unoccupied airflow rate. This rate is determined by the building owner standards, along with the designer and ASHRAE Standard 62.1. [4]

Codes & standards

Common reference codes and standards for ventilation:

Examples of estimating occupancy

See also

Related Research Articles

<span class="mw-page-title-main">Heating, ventilation, and air conditioning</span> Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.

<span class="mw-page-title-main">Indoor air quality</span> Air quality within and around buildings and structures

Indoor air quality (IAQ) is the air quality within and around buildings and structures. Poor indoor air quality due to indoor air pollution is known to affect the health, comfort, and well-being of building occupants. It has also been linked to sick building syndrome, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include: secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide, ozone and particulates. Source control, filtration, and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality.

<span class="mw-page-title-main">Fume hood</span> Type of local ventilation device

A fume hood is a type of local exhaust ventilation device that is designed to limit exposure to hazardous or toxic fumes, vapors or dusts. The device is an enclosure with a movable sash window on one side that traps and exhausts gases and particulates either out of the area or back into the room, and is most frequently used in laboratory settings.

Sick building syndrome (SBS) is a condition in which people develop symptoms of illness or become infected with chronic disease from the building in which they work or reside.

<span class="mw-page-title-main">Ventilation (architecture)</span> Intentional introduction of outside air into a space

Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of the indoor environment, or other objectives.

Building automation (BAS), also known as building management system (BMS) or building energy management system (BEMS), is the automatic centralized control of a building's HVAC, electrical, lighting, shading, access control, security systems, and other interrelated systems. Some objectives of building automation are improved occupant comfort, efficient operation of building systems, reduction in energy consumption, reduced operating and maintaining costs and increased security.

<span class="mw-page-title-main">Building science</span>

Building science is the science and technology-driven collection of knowledge in order to provide better indoor environmental quality (IEQ), energy-efficient built environments, and occupant comfort and satisfaction. Building physics, architectural science, and applied physics are terms used for the knowledge domain that overlaps with building science. In building science, the methods used in natural and hard sciences are widely applied, which may include controlled and quasi-experiments, randomized control, physical measurements, remote sensing, and simulations. On the other hand, methods from social and soft sciences, such as case study, interviews & focus group, observational method, surveys, and experience sampling, are also widely used in building science to understand occupant satisfaction, comfort, and experiences by acquiring qualitative data. One of the recent trends in building science is a combination of the two different methods. For instance, it is widely known that occupants' thermal sensation and comfort may vary depending on their sex, age, emotion, experiences, etc. even in the same indoor environment. Despite the advancement in data extraction and collection technology in building science, objective measurements alone can hardly represent occupants' state of mind such as comfort and preference. Therefore, researchers are trying to measure both physical contexts and understand human responses to figure out complex interrelationships.

Displacement ventilation (DV) is a room air distribution strategy where conditioned outdoor air is supplied at a low velocity from air supply diffusers located near floor level and extracted above the occupied zone, usually at ceiling height.

<span class="mw-page-title-main">Variable air volume</span> Heating or air-conditioning system

Variable air volume (VAV) is a type of heating, ventilating, and/or air-conditioning (HVAC) system. Unlike constant air volume (CAV) systems, which supply a constant airflow at a variable temperature, VAV systems vary the airflow at a constant or varying temperature. The advantages of VAV systems over constant-volume systems include more precise temperature control, reduced compressor wear, lower energy consumption by system fans, less fan noise, and additional passive dehumidification.

A carbon dioxide sensor or CO2 sensor is an instrument for the measurement of carbon dioxide gas. The most common principles for CO2 sensors are infrared gas sensors (NDIR) and chemical gas sensors. Measuring carbon dioxide is important in monitoring indoor air quality, the function of the lungs in the form of a capnograph device, and many industrial processes.

<span class="mw-page-title-main">Duct (flow)</span> Conduit used in heating, ventilation, and air conditioning

Ducts are conduits or passages used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, supply air, return air, and exhaust air. Ducts commonly also deliver ventilation air as part of the supply air. As such, air ducts are one method of ensuring acceptable indoor air quality as well as thermal comfort.

<span class="mw-page-title-main">Passive ventilation</span> Ventilation without use of mechanical systems

Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces.

Air changes per hour, abbreviated ACPH or ACH, or air change rate is the number of times that the total air volume in a room or space is completely removed and replaced in an hour. If the air in the space is either uniform or perfectly mixed, air changes per hour is a measure of how many times the air within a defined space is replaced each hour. Perfectly mixed air refers to a theoretical condition where supply air is instantly and uniformly mixed with the air already present in a space, so that conditions such as age of air and concentration of pollutants are spatially uniform.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

<span class="mw-page-title-main">Underfloor air distribution</span>

Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings as part of the design of a HVAC system. UFAD systems use an underfloor supply plenum located between the structural concrete slab and a raised floor system to supply conditioned air to supply outlets, located at or near floor level within the occupied space. Air returns from the room at ceiling level or the maximum allowable height above the occupied zone.

<span class="mw-page-title-main">Dedicated outdoor air system</span>

A dedicated outdoor air system (DOAS) is a type of heating, ventilation and air-conditioning (HVAC) system that consists of two parallel systems: a dedicated system for delivering outdoor air ventilation that handles both the latent and sensible loads of conditioning the ventilation air, and a parallel system to handle the loads generated by indoor/process sources and those that pass through the building enclosure.

Airflow, or air flow, is the movement of air. The primary cause of airflow is the existence of air. Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition.

ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy is an American National Standard published by ASHRAE that establishes the ranges of indoor environmental conditions to achieve acceptable thermal comfort for occupants of buildings. It was first published in 1966, and since 2004 has been updated every three to six years. The most recent version of the standard was published in 2023.

<span class="mw-page-title-main">Ventilative cooling</span>

Ventilative cooling is the use of natural or mechanical ventilation to cool indoor spaces. The use of outside air reduces the cooling load and the energy consumption of these systems, while maintaining high quality indoor conditions; passive ventilative cooling may eliminate energy consumption. Ventilative cooling strategies are applied in a wide range of buildings and may even be critical to realize renovated or new high efficient buildings and zero-energy buildings (ZEBs). Ventilation is present in buildings mainly for air quality reasons. It can be used additionally to remove both excess heat gains, as well as increase the velocity of the air and thereby widen the thermal comfort range. Ventilative cooling is assessed by long-term evaluation indices. Ventilative cooling is dependent on the availability of appropriate external conditions and on the thermal physical characteristics of the building.

Occupant-centric building controls or Occupant-centric controls (OCC) is a control strategy for the indoor environment, that specifically focuses on meeting the current needs of building occupants while decreasing building energy consumption. OCC can be used to control lighting and appliances, but is most commonly used to control heating, ventilation, and air conditioning (HVAC). OCC use real-time data collected on indoor environmental conditions, occupant presence and occupant preferences as inputs to energy system control strategies. By responding to real-time inputs, OCC is able to flexibly provide the proper level of energy services, such as heating and cooling, when and where it is needed by occupants. Ensuring that building energy services are provided in the right quantity is intended to improve occupant comfort while providing these services only at the right time and in the right location is intended to reduce overall energy use.

References

  1. 1 2 3 Zhang, Sheng; Ai, Zhengtao; Lin, Zhang (23 April 2021). "Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving". Applied Energy. 293: 116954. doi:10.1016/j.apenergy.2021.116954. ISSN   0306-2619.
  2. 1 2 3 O'Neill, Zheng D.; Li, Yanfei; Cheng, Hwakong C.; Zhou, Xiaohui; Taylor, Steven T. (30 April 2019). "Energy savings and ventilation performance from CO 2 -based demand controlled ventilation: Simulation results from ASHRAE RP-1747 (ASHRAE RP-1747)". Science and Technology for the Built Environment. 26 (2): 257–281. doi:10.1080/23744731.2019.1620575. ISSN   2374-4731.
  3. "What is a Ductless Air Conditioner and How Does it Work?". 2023-09-28. Retrieved 2024-03-23.
  4. Lin, X.; Lau, J. (2016). "Applying demand-controlled ventilation" (PDF). ASHRAE Journal. 58 (1): 30–32, 34, 36. ProQuest   1755482305.
  5. "Demand Control Ventilation Benefits for Your Building" (PDF). KMC Controls. 2013.
  6. Mysen, Mads; Berntsen, Sveinung; Nafstad, Per; Schild, Peter G. (December 2005). "Occupancy density and benefits of demand-controlled ventilation in Norwegian primary schools". Energy and Buildings. 37 (12): 1234–1240. doi:10.1016/j.enbuild.2005.01.003.
  7. Jin, Ming; Bekiaris-Liberis, Nikolaos; Weekly, Kevin; Spanos, Costas J.; Bayen, Alexandre M. (April 2018). "Occupancy Detection via Environmental Sensing". IEEE Transactions on Automation Science and Engineering. 15 (2): 443–455. doi:10.1109/tase.2016.2619720. S2CID   4600376.
  8. University of California, Merced. "Occupancy Measurement, Modeling and Prediction for Energy Efficient Buildings". Archived from the original on 3 December 2012. Retrieved 26 March 2013.
  9. Lawrence Berkeley National Laboratory. "Carbon Dioxide Measurement & People Counting for Demand Controlled Ventilation". Archived from the original on 17 May 2013. Retrieved 26 March 2013.
  10. Jin, Ming; Jia, Ruoxi; Spanos, Costas J. (1 November 2017). "Virtual Occupancy Sensing: Using Smart Meters to Indicate Your Presence". IEEE Transactions on Mobile Computing. 16 (11): 3264–3277. arXiv: 1407.4395 . doi:10.1109/tmc.2017.2684806. S2CID   1997078.