Solar-assisted heat pump

Last updated
Hybrid photovoltaic-thermal solar panels of a SAHP in an experimental installation at Department of Energy at Polytechnic of Milan SAHP - PVT Panels.jpg
Hybrid photovoltaic-thermal solar panels of a SAHP in an experimental installation at Department of Energy at Polytechnic of Milan

A solar-assisted heat pump (SAHP) is a machine that combines a heat pump and thermal solar panels and/or PV solar panels in a single integrated system. [1] Typically these two technologies are used separately (or only placing them in parallel) to produce hot water. [2] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator. [3] The goal of this system is to get high coefficient of performance (COP) and then produce energy in a more efficient and less expensive way.

Contents

It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the heat pump. The use of a hybrid panel is preferable because it allows covering a part of the electricity demand of the heat pump and reduce the power consumption and consequently the variable costs of the system.

Optimization

The operating conditions' optimization of this system is the main challenge, because there are two opposing trends of the performance of the two sub-systems: by way of example, decreasing the evaporation temperature of the working fluid increases the thermal efficiency of the solar panel but decreases the performance of the heat pump, and consequently the COP. [4] The target for the optimization is normally the minimization of the electrical consumption of the heat pump, or primary energy required by an auxiliary boiler which supplies the load not covered by a renewable source.

Configurations

There are two possible configurations of this system, which are distinguished by the presence or not of an intermediate fluid that transports the heat from the panel to the heat pump. Machines called indirect-expansion mainly use water as a heat transfer fluid, mixed with an antifreeze fluid (usually glycol) to avoid ice formation phenomena during winter period. The machines called direct-expansion place the refrigerant fluid directly inside the hydraulic circuit of the thermal panel, where the phase transition takes place. [4] This second configuration, even though it is more complex from a technical point of view, has several advantages: [5] [6]

Comparison

Generally speaking the use of this integrated system is an efficient way to employ the heat produced by the thermal panels in winter period, something that normally would not be exploited because its temperature is too low. [3]

Separated production systems

In comparison with only heat pump utilization, it is possible to reduce the amount of electrical energy consumed by the machine during the weather evolution from winter season to the spring, and then finally only use thermal solar panels to produce all the heat demand required (only in case of indirect-expansion machine), thus saving on variable costs. [2]

In comparison with a system with only thermal panels, it is possible to provide a greater part of the required winter heating using a non-fossil energy source. [7]

Traditional heat pumps

Compared to geothermal heat pumps, the main advantage is that the installation of a piping field in the soil is not required, which results in a lower cost of investment (drilling accounts for about 50% of the cost of a geothermal heat pump system) and in more flexibility of machine installation, even in areas in which there is limited available space. Furthermore, there are no risks related to possible thermal soil impoverishment. [8]

Similarly to air source heat pumps, solar-assisted heat pump performance is affected by atmospheric conditions, although this effect is less significant. Solar-assisted heat pump performance is generally affected by varying solar radiation intensity rather than air temperature oscillation. This produces a greater SCOP (Seasonal COP). Additionally, evaporation temperature of the working fluid is higher than in air source heat pumps, so in general the coefficient of performance is significantly higher. [5]

Low temperature conditions

In general, a heat pump can evaporate at temperatures below the ambient temperature. In a solar-assisted heat pump this generates a temperature distribution of the thermal panels below that temperature. In this condition thermal losses of the panels towards the environment become additional available energy to the heat pump. [9] [10] In this case it is possible that the thermal efficiency of solar panels is more than 100%.

Another free-contribution in these conditions of low temperature is related to the possibility of condensation of water vapor on the surface of the panels, which provides additional heat to the heat transfer fluid (normally it is a small part of the total heat collected by solar panels), that is equal to the latent heat of condensation.

Heat pump with double cold sources

The simple configuration of solar-assisted heat pump as only solar panels as heat source for the evaporator. It can also exist a configuration with an additional heat source. [2] The goal is to have further advantages in energy saving but, on the other hand, the management and optimization of the system become more complex.

The geothermal-solar configuration allows reducing the size of the piping field (and reduce the investment) and to have a regeneration of the ground during summer through the heat collected from the thermal panels.

The air-solar structure allows an acceptable heat input also during cloudy days, maintaining the compactness of the system and the easiness to install it.

Challenges

As in regular air conditioners, one of the issues is to keep the evaporation temperature high, especially when the sunlight has low power and the ambient airflow is low.

See also

Related Research Articles

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is the radiant energy from the Sun's light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include designing a building for better daylighting, selecting materials with favorable thermal mass or light-dispersing properties, and organize spaces that naturally circulate air.

<span class="mw-page-title-main">Heat pump</span> System that transfers heat from one space to another

A heat pump is a device that consumes energy to transfer heat from a cold heat sink to a hot heat sink. Specifically, the heat pump transfers thermal energy using a refrigeration cycle, cooling the cool space and warming the warm space. In cold weather, a heat pump can move heat from the cool outdoors to warm a house ; the pump may also be designed to move heat from the house to the warmer outdoors in warm weather. As they transfer heat rather than generating heat, they are more energy-efficient than other ways of heating or cooling a home.

<span class="mw-page-title-main">Heat pipe</span> Heat-transfer device that employs phase transition

A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces.

<span class="mw-page-title-main">Solar water heating</span> Use of sunlight for water heating with a solar thermal collector

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non-water heating devices such as solar cookers or solar air heaters.

Solar desalination is a desalination technique powered by solar energy. The two common methods are direct (thermal) and indirect (photovoltaic).

Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.

Solar air conditioning, or "solar-powered air conditioning", refers to any air conditioning (cooling) system that uses solar power.

<span class="mw-page-title-main">Absorption heat pump</span> Heat pump driven by thermal energy

An absorption heat pump (AHP) is a heat pump driven by thermal energy such as combustion of natural gas, steam solar-heated water, air or geothermal-heated water differently from compression heat pumps that are driven by mechanical energy. AHPs are more complex and require larger units compared to compression heat pumps. In particular, the lower electricity demand of such heat pumps is related to the liquid pumping only. Their applications are restricted to those cases when electricity is extremely expensive or a large amount of unutilized heat at suitable temperatures is available and when the cooling or heating output has a greater value than heat input consumed. Absorption refrigerators also work on the same principle, but are not reversible and cannot serve as a heat source.

<span class="mw-page-title-main">Transcritical cycle</span> Closed thermodynamic cycle involving fluid

A transcritical cycle is a closed thermodynamic cycle where the working fluid goes through both subcritical and supercritical states. In particular, for power cycles the working fluid is kept in the liquid region during the compression phase and in vapour and/or supercritical conditions during the expansion phase. The ultrasupercritical steam Rankine cycle represents a widespread transcritical cycle in the electricity generation field from fossil fuels, where water is used as working fluid. Other typical applications of transcritical cycles to the purpose of power generation are represented by organic Rankine cycles, which are especially suitable to exploit low temperature heat sources, such as geothermal energy, heat recovery applications or waste to energy plants. With respect to subcritical cycles, the transcritical cycle exploits by definition higher pressure ratios, a feature that ultimately yields higher efficiencies for the majority of the working fluids. Considering then also supercritical cycles as a valid alternative to the transcritical ones, the latter cycles are capable of achieving higher specific works due to the limited relative importance of the work of compression work. This evidences the extreme potential of transcritical cycles to the purpose of producing the most power with the least expenditure.

A solar-powered desalination unit produces potable water from saline water through direct or indirect methods of desalination powered by sunlight. Solar energy is the most promising renewable energy source due to its ability to drive the more popular thermal desalination systems directly through solar collectors and to drive physical and chemical desalination systems indirectly through photovoltaic cells.

A solar controller is an electronic device that controls the circulating pump in a solar hot water system to harvest as much heat as possible from the solar panels and protect the system from overheating. The basic job of the controller is to turn the circulating pump on when there is heat available in the panels, moving the working fluid through the panels to the heat exchanger at the thermal store. Heat is available whenever the temperature of the solar panel is greater than the temperature of the water in the heat exchanger. Overheat protection is achieved by turning the pump off when the store reaches its maximum temperature and sometimes cooling the store by turning the pump on when the store is hotter than the panels.

<span class="mw-page-title-main">Organic Rankine cycle</span> Variation on the Rankine thermodynamic cycle

In thermal engineering, the organic Rankine cycle (ORC) is a type of thermodynamic cycle. It is a variation of the Rankine cycle named for its use of an organic, high-molecular-mass fluid whose vaporization temperature is lower than that of water. The fluid allows heat recovery from lower-temperature sources such as biomass combustion, industrial waste heat, geothermal heat, solar ponds etc. The low-temperature heat is converted into useful work, that can itself be converted into electricity.

<span class="mw-page-title-main">Concentrated solar power</span> Use of mirror or lens assemblies to heat a working fluid for electricity generation

Concentrated solar power systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight into a receiver. Electricity is generated when the concentrated light is converted to heat, which drives a heat engine connected to an electrical power generator or powers a thermochemical reaction.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

<span class="mw-page-title-main">Solar air heat</span> Solar thermal technology

Solar air heating is a solar thermal technology in which the energy from the sun, insolation, is captured by an absorbing medium and used to heat air. Solar air heating is a renewable energy heating technology used to heat or condition air for buildings or process heat applications. It is typically the most cost-effective out of all the solar technologies, especially in commercial and industrial applications, and it addresses the largest usage of building energy in heating climates, which is space heating and industrial process heating.

The following outline is provided as an overview of and topical guide to solar energy:

Renewable thermal energy is the technology of gathering thermal energy from a renewable energy source for immediate use or for storage in a thermal battery for later use.

There are many practical applications for solar panels or photovoltaics. From the fields of the agricultural industry as a power source for irrigation to its usage in remote health care facilities to refrigerate medical supplies. Other applications include power generation at various scales and attempts to integrate them into homes and public infrastructure. PV modules are used in photovoltaic systems and include a large variety of electrical devices.

<span class="mw-page-title-main">Concentrated photovoltaic thermal system</span>

The combination of photovoltaic (PV) technology, solar thermal technology, and reflective or refractive solar concentrators has been a highly appealing option for developers and researchers since the late 1970s and early 1980s. The result is what is known as a concentrated photovoltaic thermal (CPVT) system which is a hybrid combination of concentrated photovoltaic (CPV) and photovoltaic thermal (PVT) systems.

References

  1. Sezen, Kutbay; Gungor, Afsin (2023-01-01). "Comparison of solar assisted heat pump systems for heating residences: A review". Solar Energy. 249: 424–445. doi:10.1016/j.solener.2022.11.051. ISSN   0038-092X. Photovoltaic-thermal direct expansion solar assisted heat pump (PV/T-DX-SAHP) system enables to benefit the waste heat for evaporation of refrigerant in PV/T collector-evaporator, while providing better cooling for PV cells (Yao et al., 2020).
  2. 1 2 3 "Solar-assisted heat pumps". Archived from the original on 28 February 2020. Retrieved 21 June 2016.
  3. 1 2 "Pompe di calore elio-assistite" (in Italian). Archived from the original on 7 January 2012. Retrieved 21 June 2016.
  4. 1 2 Fallini, Nicola; Floreano, Stefano Luigi (31 March 2011). "Sistemi a pompa di calore elioassistita: modello di simulazione in ambiente TRNSYS e confronto energetico di configurazioni impiantistiche" (PDF) (in Italian). Retrieved 21 June 2016.
  5. 1 2 Jie, Jia; Hanfeng, Hea; Tin-tai, Chowb; Gang, Peia; Wei, Hea; Keliang, Liua (2009). "Distributed dynamic modeling and experimental study of PV evaporator in a PV/T solar-assisted heat pump". International Journal of Heat and Mass Transfer. 52 (5–6): 1365–1373. doi:10.1016/j.ijheatmasstransfer.2008.08.017.
  6. Jie, Jia; Gang, Peia; Tin-tai, Chowb; Keliang, Liua; Hanfeng, Hea; Jianping, Lua; Chongwei, Hana (2007). "Experimental study of photovoltaic solar assisted heat pump system". Solar Energy. 82 (1): 43–52. Bibcode:2008SoEn...82...43J. doi:10.1016/j.solener.2007.04.006.
  7. Kuang, Y. H.; Wang, R. Z. (2006). "Performance of a multi-functional direct-expansion solar assisted heat pump system". Solar Energy. 80 (7): 795–803. Bibcode:2006SoEn...80..795K. doi:10.1016/j.solener.2005.06.003.
  8. Carotti, Attilio (2014). WOLTERS KLUWER ITALIA (ed.). Edifici a elevate prestazioni energetiche e acustiche. Energy management (in Italian).
  9. Huang, B. J.; Chyng, J. P. (2001). "Performance characteristics of integral type solar-assisted heat pump" (PDF). Solar Energy. 71 (6): 403–414. Bibcode:2001SoEn...71..403H. doi:10.1016/S0038-092X(01)00076-7.
  10. "Thermboil – Pannelli termodinamici" (in Italian). Archived from the original on 15 June 2016. Retrieved 21 June 2016.