Displacement ventilation

Last updated

Displacement ventilation (DV) is a room air distribution strategy where conditioned outdoor air is supplied at a low velocity from air supply diffusers located near floor level and extracted above the occupied zone, usually at ceiling height. [1]

Contents

System design

A typical displacement ventilation system, such as one in an office space, supplies conditioned cold air from an air handling unit (AHU) through a low induction air diffuser. Diffuser types vary by applications. Diffusers can be located against a wall ("wall-mounted"), at the corner of a room ("corner-mounted"), or above the floor but not against a wall ("free-standing"). [2] The cool air accelerates because of the buoyancy force, spreads in a thin layer over the floor, reaching a relatively high velocity before rising due to heat exchange with heat sources (e.g., occupants, computers, lights). [3] Absorbing the heat from heat sources, the cold air becomes warmer and less dense. The density difference between cold air and warm air creates upward convective flows known as thermal plumes. Instead of working as a stand-alone system in interior space, displacement ventilation system can also be coupled with other cooling and heating sources, such as radiant chilled ceilings [4] or baseboard heating. [1]

History

Displacement ventilation was first applied in an industrial building in Scandinavia in 1978, and has frequently been used in similar applications, as well as office spaces, throughout Scandinavia since that time. [1] By 1989, it was estimated that displacement ventilation comprised the 50% in industrial applications and 25% in offices within Nordic countries. [5] Applications in the United States have not been as widespread as in Scandinavia. Some research has been done to assess the practicality of this application in U.S. markets due to different typical space designs [1] and application in hot and humid climates, as well as research to assess the potential indoor environmental quality and energy-saving benefits of this strategy in the U.S. and elsewhere.

Applications

Displacement ventilation has been applied in many famous building such as the Suvarnabhumi International Airport in Bangkok, Thailand, the NASA Jet Propulsion Laboratory Flight Projects Center building, [6] [7] and the San Francisco International Airport [8] [9] Terminal 2 among other applications.

General characteristics

Airflow distribution

The thermal plumes and supply air from diffusers, which determines the velocity of airflow at floor level, play an important role in DV systems. It is necessary to carefully set the airflow rate from the diffuser to avoid drafts.

Conditioning type

Due to the unique properties of thermal stratification, displacement ventilation is typically used for cooling rather than for heating. In many cases, a separate heating source, such as a radiator or baseboard, is used during heating periods. [1]

Space requirement

Displacement ventilation is best suited for taller spaces (higher than 3 meters [10 feet]). [2] Standard mixing ventilation may be better suited for smaller spaces where air quality is not as great a concern, such as single-occupant offices, and where the room height is not tall (e.g., lower than 2.3 meters [7.5 feet]). [2]

Benefits and limitations

Local discomfort: vertical temperature difference and draft

Displacement ventilation systems are quieter than conventional overhead systems with better ventilation efficiency. Hence, it could enhance indoor air quality and provide desirable acoustic environment. Displacement ventilation systems are appropriate in space where high ventilation is required, such as classrooms, conference rooms, and offices.

Displacement ventilation can be a cause of discomfort due to the large vertical temperature gradient and drafts. [10] According to Melikov and Pitchurov's research, sensations of cold caused by vertical temperature difference and draft are usually occurred at the lower leg/ ankle/ feet region, while warm sensations at the head are reported. [11] The research also indicates, that the draft rating model could predict the draft risk with good accuracy in rooms with displacement ventilation systems.

There is a tradeoff inherent in these two issues: by increasing the flow rate (and the ability to remove greater thermal loads), the vertical temperature gradient can be reduced, but this could increase the risk of drafts. [1] Pairing displacement ventilation with radiant chilled ceilings is an effort to mitigate this problem. [12] According to some studies, displacement ventilation systems can only provide acceptable comfort if the corresponding cooling load is less than about 13 Btu/h-sf or 40 W/m2.

Indoor air quality

One benefit of displacement ventilation is possibly the superior indoor air quality achieved with exhausting contaminated air out of the room. Better air quality is achieved when the pollution source is also a heat source. [1] [2]

The effectiveness of displacement ventilation at removing particulate contaminants has been investigated recently. [13] [14] Small aqueous droplets containing infectious nuclei are frequently released in hospital rooms and other indoor spaces, and tend to settle through the ambient air at a speed of order 1–10 mm/s typically. In cold climates or seasons, sufficiently small droplets are extracted from the top of a displacement-ventilated space if the mean upward air speed exceeds the particle settling speed. However, laboratory experiments have shown that larger droplets may settle faster than the air moves. In this case, the large droplets are not extracted effectively from a space with upward displacement ventilation, and their concentration increases if the ventilation rate is increased. [13] In warmer climates or seasons, large-scale instabilities in the concentration of contaminants may occur within a space with downward displacement ventilation. [14]

Energy consumption

Some studies have demonstrated that displacement ventilation may save energy as compared to standard mixing ventilation, depending on the use type of the building, design/massing/orientation, and other factors. [1] However, for the evaluation of energy consumption of displacement ventilation, the numerical simulation is the main method, since yearly measurements are too expensive and time consuming. Hence, whether displacement ventilation could help with saving energy is still debated. In general, displacement ventilation is attractive to the core region in a building since no heating is needed. However, the perimeter zones require high cooling energy.

Design guidelines

Different guidelines have been published to provide guidance on designing displacement ventilation systems, including:

Among guidelines listed above, the one developed by Chen and Glicksman are aimed specifically at fulfilling U.S. Standard. Below is a brief description of each step of their guideline. [15]

          Step 1) Judge the applicability of displacement ventilation

          Step 2) Calculate summer design cooling load.

          Step 3) Determine the required flow rate of the supply air for summer cooling.

          Step 4) Find the required flow rate of fresh air for acceptable indoor air quality.

          Step 5) Determine the supply air flow rate.

          Step 6) Calculate the supply airflow rate.

          Step 7) Determine the ratio of the fresh air to the supply air.

          Step 8) Select supply air diffuser size and number.

          Step 9) Check the winter heating situation.

          Step 10) Estimate the first costs and annual energy consumption.

List of buildings using displacement ventilation

BuildingYearCountryCityArchitectsSpace Type
Jewish Museum Berlin 1999 Germany Berlin Daniel Libeskind Exhibit space
Bangkok International Airport 2006 Thailand Bangkok Helmut Jahn of Murphy / Jahn Architects Airport terminal
Hearst Tower 2006 United States New York City, NY Norman Foster of Foster + Partners Large public space
Newseum 2011United States Washington, D.C. Polshek Partnership Large public space
Modesto Medical Center2008United States Modesto, California KP ArchitectsHealth-care
St. John's University, St. John's Hall1950sUnited StatesNew York City, NYunknownTeaching environment
Carnegie Hall 1891United StatesNew York City, NY William Burnet Tuthill Theater
Samuel J. Friedman Theater 1920sUnited StatesNew York City, NY Herbert J. Krapp Theater
National Center for the Performing Arts 2007 China Beijing Paul Andreu Theater
The Copenhagen Opera 2004 Denmark Copenhagen Henning Larsen Theater

See also

Related Research Articles

<span class="mw-page-title-main">Heating, ventilation, and air conditioning</span> Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.

<span class="mw-page-title-main">Ventilation (architecture)</span> Intentional introduction of outside air into a space

Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of the indoor environment, or other objectives.

<span class="mw-page-title-main">Air handler</span> Device used to regulate and circulate air as part of an HVAC system

An air handler, or air handling unit, is a device used to regulate and circulate air as part of a heating, ventilating, and air-conditioning (HVAC) system. An air handler is usually a large metal box containing a blower, furnace or A/C elements, filter racks or chambers, sound attenuators, and dampers. Air handlers usually connect to a ductwork ventilation system that distributes the conditioned air through the building and returns it to the AHU, sometimes exhausting air to the atmosphere and bringing in fresh air. Sometimes AHUs discharge (supply) and admit (return) air directly to and from the space served without ductwork

<span class="mw-page-title-main">Variable air volume</span> Heating or air-conditioning system

Variable air volume (VAV) is a type of heating, ventilating, and/or air-conditioning (HVAC) system. Unlike constant air volume (CAV) systems, which supply a constant airflow at a variable temperature, VAV systems vary the airflow at a constant or varying temperature. The advantages of VAV systems over constant-volume systems include more precise temperature control, reduced compressor wear, lower energy consumption by system fans, less fan noise, and additional passive dehumidification.

<span class="mw-page-title-main">Underfloor heating</span> Form of central heating and cooling

Underfloor heating and cooling is a form of central heating and cooling that achieves indoor climate control for thermal comfort using hydronic or electrical heating elements embedded in a floor. Heating is achieved by conduction, radiation and convection. Use of underfloor heating dates back to the Neoglacial and Neolithic periods.

<span class="mw-page-title-main">Energy recovery ventilation</span> Uses the energy in air exhausted from a building to treat the incoming air

Energy recovery ventilation (ERV) is the energy recovery process in residential and commercial HVAC systems that exchanges the energy contained in normally exhausted air of a building or conditioned space, using it to treat (precondition) the incoming outdoor ventilation air. The specific equipment involved may be called an Energy Recovery Ventilator, also commonly referred to simply as an ERV.

<span class="mw-page-title-main">Duct (flow)</span> Conduit used in heating, ventilation, and air conditioning

Ducts are conduits or passages used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, supply air, return air, and exhaust air. Ducts commonly also deliver ventilation air as part of the supply air. As such, air ducts are one method of ensuring acceptable indoor air quality as well as thermal comfort.

Thermal comfort is the condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. The human body can be viewed as a heat engine where food is the input energy. The human body will release excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not release enough heat. Both the hot and cold scenarios lead to discomfort. Maintaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers.

<span class="mw-page-title-main">Passive ventilation</span> Ventilation without use of mechanical systems

Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces.

Room air distribution is characterizing how air is introduced to, flows through, and is removed from spaces. HVAC airflow in spaces generally can be classified by two different types: mixing and displacement.

A chilled beam is a type of radiation/convection HVAC system designed to heat and cool large buildings through the use of water. This method removes most of the zone sensible local heat gains and allows the flow rate of pre-conditioned air from the air handling unit to be reduced, lowering by 60% to 80% the ducted design airflow rate and the equipment capacity requirements. There are two types of chilled beams, a Passive Chilled Beam (PCB) and an Active Chilled Beam (ACB). They both consist of pipes of water (fin-and-tube) that pass through a heat exchanger contained in a case suspended from, or recessed in, the ceiling. As the beam cools the air around it, the air becomes denser and falls to the floor. It is replaced by warmer air moving up from below, causing a constant passive air movement called convection, to cool the room. The active beam consists of air duct connections, induction nozzles, hydronic heat transfer coils, supply outlets and induced air inlets. It contains an integral air supply that passes through nozzles, and induces air from the room to the cooling coil. For this reason, it has a better cooling capacity than the passive beam. Instead, the passive beam provides space cooling without the use of a fan and it is mainly done by convection. Passive beams can be either exposed or recessed. The passive approach can provide higher thermal comfort levels, while the active approach uses the momentum of ventilation air that enters at relatively high velocity to induce the circulation of room air through the unit. A chilled beam is similar in appearance to a VRF unit.

Air changes per hour, abbreviated ACPH or ACH, or air change rate is the number of times that the total air volume in a room or space is completely removed and replaced in an hour. If the air in the space is either uniform or perfectly mixed, air changes per hour is a measure of how many times the air within a defined space is replaced each hour. Perfectly mixed air refers to a theoretical condition where supply air is instantly and uniformly mixed with the air already present in a space, so that conditions such as age of air and concentration of pollutants are spatially uniform.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

<span class="mw-page-title-main">Thermal destratification</span> Method of stirring a confined fluid to achieve equal temperatures

Thermal destratification is the process of mixing the internal air in a building to eliminate stratified layers and achieve temperature equalization throughout the building envelope.

<span class="mw-page-title-main">Underfloor air distribution</span>

Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings as part of the design of a HVAC system. UFAD systems use an underfloor supply plenum located between the structural concrete slab and a raised floor system to supply conditioned air to supply outlets, located at or near floor level within the occupied space. Air returns from the room at ceiling level or the maximum allowable height above the occupied zone.

<span class="mw-page-title-main">Dedicated outdoor air system</span>

A dedicated outdoor air system (DOAS) is a type of heating, ventilation and air-conditioning (HVAC) system that consists of two parallel systems: a dedicated system for delivering outdoor air ventilation that handles both the latent and sensible loads of conditioning the ventilation air, and a parallel system to handle the loads generated by indoor/process sources and those that pass through the building enclosure.

<span class="mw-page-title-main">Radiant heating and cooling</span> Category of HVAC technologies

Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", "embedded surface systems", "thermally active building systems", and infrared heaters. According to some definitions, a technology is only included in this category if radiation comprises more than 50% of its heat exchange with the environment; therefore technologies such as radiators and chilled beams are usually not considered radiant heating or cooling. Within this category, it is practical to distinguish between high temperature radiant heating, and radiant heating or cooling with more moderate source temperatures. This article mainly addresses radiant heating and cooling with moderate source temperatures, used to heat or cool indoor environments. Moderate temperature radiant heating and cooling is usually composed of relatively large surfaces that are internally heated or cooled using hydronic or electrical sources. For high temperature indoor or outdoor radiant heating, see: Infrared heater. For snow melt applications see: Snowmelt system.

<span class="mw-page-title-main">ASHRAE</span> American HVAC professional association

The American Society of Heating, Refrigerating and Air-Conditioning Engineers is an American professional association seeking to advance heating, ventilation, air conditioning and refrigeration (HVAC&R) systems design and construction. ASHRAE has over 50,000 members in more than 130 countries worldwide.

Demand controlled ventilation (DCV) is a feedback control method to maintain indoor air quality that automatically adjusts the ventilation rate provided to a space in response to changes in conditions such as occupant number or indoor pollutant concentration. The control strategy is mainly intended to reduce the energy use by heating, cooling, and ventilation systems compared to buildings that use open-loop controls with constant ventilation rates.

<span class="mw-page-title-main">Ventilative cooling</span>

Ventilative cooling is the use of natural or mechanical ventilation to cool indoor spaces. The use of outside air reduces the cooling load and the energy consumption of these systems, while maintaining high quality indoor conditions; passive ventilative cooling may eliminate energy consumption. Ventilative cooling strategies are applied in a wide range of buildings and may even be critical to realize renovated or new high efficient buildings and zero-energy buildings (ZEBs). Ventilation is present in buildings mainly for air quality reasons. It can be used additionally to remove both excess heat gains, as well as increase the velocity of the air and thereby widen the thermal comfort range. Ventilative cooling is assessed by long-term evaluation indices. Ventilative cooling is dependent on the availability of appropriate external conditions and on the thermal physical characteristics of the building.

References

  1. 1 2 3 4 5 6 7 8 9 Chen, Q.; Glicksman, L. (1999). Performance Evaluation and Development of Design Guidelines for Displacement Ventilation. MA.: ASHRAE.
  2. 1 2 3 4 5 REHVA. (2002). Displacement Ventilation in Non-Industrial Premises. Federation of European Heating and Air-conditioning Associations.
  3. Novoselac, Atila; J., Srebric (June 2002). "A critical review on the performance and design of combined cooled ceiling and displacement ventilation systems". Energy and Buildings. 34 (5): Energy and Buildings. doi:10.1016/S0378-7788(01)00134-7.
  4. Schiavon, Stefano; Bauman, F.; Tully, B.; Rimmer, J. (2012). "Room air stratification in combined chilled ceiling and displacement ventilation systems". HVAC&R Research. 18 (1): 147–159. S2CID   55305722.
  5. Svensson, A.G.L. (1989). "ordic Experiences of Displacement Ventilation Systems". ASHRAE Transactions. 95 (2).
  6. "NASA's Out of this World Green Building - Web Exclusives - EDC Magazine". edcmag.com. Archived from the original on 22 January 2013. Retrieved 9 December 2010.
  7. https://www.energystar.gov/sites/default/uploads/buildings/old/files/50_Flight_Project_508.pdf [ bare URL PDF ]
  8. "San Francisco Airport aims to achieve zero net energy (USGBC Northern California) | U.S. Green Building Council".
  9. "Zero-energy green building in a data-enlightened era". 12 September 2018.
  10. ANSI/ASHRAE Standard 55 (2002). Thermal Environmental Conditions for Human Occupancy
  11. Melikov, Arsen; Pitchurov, G.; Naydenov, K.; Langkilde, G. (June 2005). "Field study of occupants'thermal comfort in rooms with displacement ventilation". Indoor Air. 15 (3): 205–214. doi: 10.1111/j.1600-0668.2005.00337.x . PMID   15865620.
  12. Loveday, D.L.; Parsons, K.C.; Taki, A.H.; Hodder, S.G. (July 2002). "Displacement ventilation environments with chilled ceilings: thermal comfort design within the context of the BS EN ISO7730 versus adaptive debate". Energy and Buildings. 34 (6): 573–579. doi:10.1016/S0378-7788(02)00007-5.
  13. 1 2 Woods, Andrew W.; Mingotti, Nicola (June 2015). "On the transport of heavy particles through an upward displacement-ventilated space". Journal of Fluid Mechanics. 772: 478–507. Bibcode:2015JFM...772..478M. doi:10.1017/jfm.2015.204. ISSN   0022-1120. S2CID   233733115.
  14. 1 2 Woods, Andrew W.; Mingotti, Nicola (July 2015). "On the transport of heavy particles through a downward displacement-ventilated space". Journal of Fluid Mechanics. 774: 192–223. Bibcode:2015JFM...774..192M. doi:10.1017/jfm.2015.244. ISSN   0022-1120. S2CID   53446651.
  15. Chen, Q; Glicksman, L.R (January 1, 2003). System performance evaluation and design guidelines for displacement ventilation. Atlanta: American Society of Heating, Refrigerating, and Air-conditioning Engineers, Inc. ISBN   978-1931862424.