Displacement ventilation (DV) is a room air distribution strategy where conditioned outdoor air is supplied at a low velocity from air supply diffusers located near floor level and extracted above the occupied zone, usually at ceiling height. [1]
A typical displacement ventilation system, such as one in an office space, supplies conditioned cold air from an air handling unit (AHU) through a low induction air diffuser. Diffuser types vary by applications. Diffusers can be located against a wall ("wall-mounted"), at the corner of a room ("corner-mounted"), or above the floor but not against a wall ("free-standing"). [2] The cool air accelerates because of the buoyancy force, spreads in a thin layer over the floor, reaching a relatively high velocity before rising due to heat exchange with heat sources (e.g., occupants, computers, lights). [3] Absorbing the heat from heat sources, the cold air becomes warmer and less dense. The density difference between cold air and warm air creates upward convective flows known as thermal plumes. Instead of working as a stand-alone system in interior space, displacement ventilation system can also be coupled with other cooling and heating sources, such as radiant chilled ceilings [4] or baseboard heating. [1]
Displacement ventilation was first applied in an industrial building in Scandinavia in 1978, and has frequently been used in similar applications, as well as office spaces, throughout Scandinavia since that time. [1] By 1989, it was estimated that displacement ventilation comprised the 50% in industrial applications and 25% in offices within Nordic countries. [5] Applications in the United States have not been as widespread as in Scandinavia. Some research has been done to assess the practicality of this application in U.S. markets due to different typical space designs [1] and application in hot and humid climates, as well as research to assess the potential indoor environmental quality and energy-saving benefits of this strategy in the U.S. and elsewhere.
Displacement ventilation has been applied in many famous building such as the Suvarnabhumi International Airport in Bangkok, Thailand, the NASA Jet Propulsion Laboratory Flight Projects Center building, [6] [7] and the San Francisco International Airport [8] [9] Terminal 2 among other applications.
The thermal plumes and supply air from diffusers, which determines the velocity of airflow at floor level, play an important role in DV systems. It is necessary to carefully set the airflow rate from the diffuser to avoid drafts.
Due to the unique properties of thermal stratification, displacement ventilation is typically used for cooling rather than for heating. In many cases, a separate heating source, such as a radiator or baseboard, is used during heating periods. [1]
Displacement ventilation is best suited for taller spaces (higher than 3 meters [10 feet]). [2] Standard mixing ventilation may be better suited for smaller spaces where air quality is not as great a concern, such as single-occupant offices, and where the room height is not tall (e.g., lower than 2.3 meters [7.5 feet]). [2]
Displacement ventilation systems are quieter than conventional overhead systems with better ventilation efficiency. Hence, it could enhance indoor air quality and provide desirable acoustic environment. Displacement ventilation systems are appropriate in space where high ventilation is required, such as classrooms, conference rooms, and offices.
Displacement ventilation can be a cause of discomfort due to the large vertical temperature gradient and drafts. [10] According to Melikov and Pitchurov's research, sensations of cold caused by vertical temperature difference and draft are usually occurred at the lower leg/ ankle/ feet region, while warm sensations at the head are reported. [11] The research also indicates, that the draft rating model could predict the draft risk with good accuracy in rooms with displacement ventilation systems.
There is a tradeoff inherent in these two issues: by increasing the flow rate (and the ability to remove greater thermal loads), the vertical temperature gradient can be reduced, but this could increase the risk of drafts. [1] Pairing displacement ventilation with radiant chilled ceilings is an effort to mitigate this problem. [12] According to some studies, displacement ventilation systems can only provide acceptable comfort if the corresponding cooling load is less than about 13 Btu/h-sf or 40 W/m2.
One benefit of displacement ventilation is possibly the superior indoor air quality achieved with exhausting contaminated air out of the room. Better air quality is achieved when the pollution source is also a heat source. [1] [2]
The effectiveness of displacement ventilation at removing particulate contaminants has been investigated recently. [13] [14] Small aqueous droplets containing infectious nuclei are frequently released in hospital rooms and other indoor spaces, and tend to settle through the ambient air at a speed of order 1–10 mm/s typically. In cold climates or seasons, sufficiently small droplets are extracted from the top of a displacement-ventilated space if the mean upward air speed exceeds the particle settling speed. However, laboratory experiments have shown that larger droplets may settle faster than the air moves. In this case, the large droplets are not extracted effectively from a space with upward displacement ventilation, and their concentration increases if the ventilation rate is increased. [13] In warmer climates or seasons, large-scale instabilities in the concentration of contaminants may occur within a space with downward displacement ventilation. [14]
Some studies have demonstrated that displacement ventilation may save energy as compared to standard mixing ventilation, depending on the use type of the building, design/massing/orientation, and other factors. [1] However, for the evaluation of energy consumption of displacement ventilation, the numerical simulation is the main method, since yearly measurements are too expensive and time consuming. Hence, whether displacement ventilation could help with saving energy is still debated. In general, displacement ventilation is attractive to the core region in a building since no heating is needed. However, the perimeter zones require high cooling energy.
Different guidelines have been published to provide guidance on designing displacement ventilation systems, including:
Among guidelines listed above, the one developed by Chen and Glicksman are aimed specifically at fulfilling U.S. Standard. Below is a brief description of each step of their guideline. [15]
Step 1) Judge the applicability of displacement ventilation
Step 2) Calculate summer design cooling load.
Step 3) Determine the required flow rate of the supply air for summer cooling.
Step 4) Find the required flow rate of fresh air for acceptable indoor air quality.
Step 5) Determine the supply air flow rate.
Step 6) Calculate the supply airflow rate.
Step 7) Determine the ratio of the fresh air to the supply air.
Step 8) Select supply air diffuser size and number.
Step 9) Check the winter heating situation.
Step 10) Estimate the first costs and annual energy consumption.
Building | Year | Country | City | Architects | Space Type |
---|---|---|---|---|---|
Jewish Museum Berlin | 1999 | Germany | Berlin | Daniel Libeskind | Exhibit space |
Bangkok International Airport | 2006 | Thailand | Bangkok | Helmut Jahn of Murphy / Jahn Architects | Airport terminal |
Hearst Tower | 2006 | United States | New York City, NY | Norman Foster of Foster + Partners | Large public space |
Newseum | 2011 | United States | Washington, D.C. | Polshek Partnership | Large public space |
Modesto Medical Center | 2008 | United States | Modesto, California | KP Architects | Health-care |
St. John's University, St. John's Hall | 1950s | United States | New York City, NY | unknown | Teaching environment |
Carnegie Hall | 1891 | United States | New York City, NY | William Burnet Tuthill | Theater |
Samuel J. Friedman Theater | 1920s | United States | New York City, NY | Herbert J. Krapp | Theater |
National Center for the Performing Arts | 2007 | China | Beijing | Paul Andreu | Theater |
The Copenhagen Opera | 2004 | Denmark | Copenhagen | Henning Larsen | Theater |
Prince Mahidol Hall | 2014 | Thailand | Nakornpathom | A49 | Theater |
Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.
Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of the indoor environment, or other objectives.
Heat recovery ventilation (HRV), also known as mechanical ventilation heat recovery (MVHR) is a ventilation system that recovers energy by operating between two air sources at different temperatures. It is used to reduce the heating and cooling demands of buildings.
An air handler, or air handling unit, is a device used to regulate and circulate air as part of a heating, ventilating, and air-conditioning (HVAC) system. An air handler is usually a large metal box containing a blower, furnace or A/C elements, filter racks or chambers, sound attenuators, and dampers. Air handlers usually connect to a ductwork ventilation system that distributes the conditioned air through the building and returns it to the AHU, sometimes exhausting air to the atmosphere and bringing in fresh air. Sometimes AHUs discharge (supply) and admit (return) air directly to and from the space served without ductwork
Variable air volume (VAV) is a type of heating, ventilating, and/or air-conditioning (HVAC) system. Unlike constant air volume (CAV) systems, which supply a constant airflow at a variable temperature, VAV systems vary the airflow at a constant or varying temperature. The advantages of VAV systems over constant-volume systems include more precise temperature control, reduced compressor wear, lower energy consumption by system fans, less fan noise, and additional passive dehumidification.
Underfloor heating and cooling is a form of central heating and cooling that achieves indoor climate control for thermal comfort using hydronic or electrical heating elements embedded in a floor. Heating is achieved by conduction, radiation and convection. Use of underfloor heating dates back to the Neoglacial and Neolithic periods.
Ducts are conduits or passages used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, supply air, return air, and exhaust air. Ducts commonly also deliver ventilation air as part of the supply air. As such, air ducts are one method of ensuring acceptable indoor air quality as well as thermal comfort.
Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces.
Room air distribution is characterizing how air is introduced to, flows through, and is removed from spaces. HVAC airflow in spaces generally can be classified by two different types: mixing and displacement.
A chilled beam is a type of radiation/convection HVAC system designed to heat and cool large buildings through the use of water. This method removes most of the zone sensible local heat gains and allows the flow rate of pre-conditioned air from the air handling unit to be reduced, lowering by 60% to 80% the ducted design airflow rate and the equipment capacity requirements.
Council House 2 (also known as CH2), is an office building located at 240 Little Collins Street in the Melbourne central business district, Australia. It is used by the City of Melbourne council, and in April 2005, became the first purpose-built office building in Australia to achieve a maximum Six Green Star rating, certified by the Green Building Council of Australia. CH2 officially opened in August 2006.
Air changes per hour, abbreviated ACPH or ACH, or air change rate is the number of times that the total air volume in a room or space is completely removed and replaced in an hour. If the air in the space is either uniform or perfectly mixed, air changes per hour is a measure of how many times the air within a defined space is replaced each hour. Perfectly mixed air refers to a theoretical condition where supply air is instantly and uniformly mixed with the air already present in a space, so that conditions such as age of air and concentration of pollutants are spatially uniform.
HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.
Thermal destratification is the process of mixing the internal air in a building to eliminate stratified layers and achieve temperature equalization throughout the building envelope.
Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings as part of the design of a HVAC system. UFAD systems use an underfloor supply plenum located between the structural concrete slab and a raised floor system to supply conditioned air to supply outlets, located at or near floor level within the occupied space. Air returns from the room at ceiling level or the maximum allowable height above the occupied zone.
A dedicated outdoor air system (DOAS) is a type of heating, ventilation and air-conditioning (HVAC) system that consists of two parallel systems: a dedicated system for delivering outdoor air ventilation that handles both the latent and sensible loads of conditioning the ventilation air, and a parallel system to handle the loads generated by indoor/process sources and those that pass through the building enclosure.
Dynamic insulation is a form of insulation where cool outside air flowing through the thermal insulation in the envelope of a building will pick up heat from the insulation fibres. Buildings can be designed to exploit this to reduce the transmission heat loss (U-value) and to provide pre-warmed, draft free air to interior spaces. This is known as dynamic insulation since the U-value is no longer constant for a given wall or roof construction but varies with the speed of the air flowing through the insulation. Dynamic insulation is different from breathing walls. The positive aspects of dynamic insulation need to be weighed against the more conventional approach to building design which is to create an airtight envelope and provide appropriate ventilation using either natural ventilation or mechanical ventilation with heat recovery. The air-tight approach to building envelope design, unlike dynamic insulation, results in a building envelope that provides a consistent performance in terms of heat loss and risk of interstitial condensation that is independent of wind speed and direction. Under certain wind conditions a dynamically insulated building can have a higher heat transmission loss than an air-tight building with the same thickness of insulation. Often the air enters at about 15 °C.
Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", "embedded surface systems", "thermally active building systems", and infrared heaters. According to some definitions, a technology is only included in this category if radiation comprises more than 50% of its heat exchange with the environment; therefore technologies such as radiators and chilled beams are usually not considered radiant heating or cooling. Within this category, it is practical to distinguish between high temperature radiant heating, and radiant heating or cooling with more moderate source temperatures. This article mainly addresses radiant heating and cooling with moderate source temperatures, used to heat or cool indoor environments. Moderate temperature radiant heating and cooling is usually composed of relatively large surfaces that are internally heated or cooled using hydronic or electrical sources. For high temperature indoor or outdoor radiant heating, see: Infrared heater. For snow melt applications see: Snowmelt system.
Demand controlled ventilation (DCV) is a feedback control method to maintain indoor air quality that automatically adjusts the ventilation rate provided to a space in response to changes in conditions such as occupant number or indoor pollutant concentration. The most common indoor pollutants monitored in DCV systems are carbon dioxide and humidity. This control strategy is mainly intended to reduce the energy used by heating, ventilation, and air conditioning (HVAC) systems compared to those of buildings that use open-loop controls with constant ventilation rates.
Ventilative cooling is the use of natural or mechanical ventilation to cool indoor spaces. The use of outside air reduces the cooling load and the energy consumption of these systems, while maintaining high quality indoor conditions; passive ventilative cooling may eliminate energy consumption. Ventilative cooling strategies are applied in a wide range of buildings and may even be critical to realize renovated or new high efficient buildings and zero-energy buildings (ZEBs). Ventilation is present in buildings mainly for air quality reasons. It can be used additionally to remove both excess heat gains, as well as increase the velocity of the air and thereby widen the thermal comfort range. Ventilative cooling is assessed by long-term evaluation indices. Ventilative cooling is dependent on the availability of appropriate external conditions and on the thermal physical characteristics of the building.