Airflow, or air flow, is the movement of air. Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition. [1]
In engineering, airflow is a measurement of the amount of air per unit of time that flows through a particular device. It can be described as a volumetric flow rate (volume of air per unit time) or a mass flow rate (mass of air per unit time). What relates both forms of description is the air density, which is a function of pressure and temperature through the ideal gas law. The flow of air can be induced through mechanical means (such as by operating an electric or manual fan) or can take place passively, as a function of pressure differentials present in the environment.
Like any fluid, air may exhibit both laminar and turbulent flow patterns. Laminar flow occurs when air can flow smoothly, and exhibits a parabolic velocity profile; turbulent flow occurs when there is an irregularity (such as a disruption in the surface across which the fluid is flowing), which alters the direction of movement. Turbulent flow exhibits a flat velocity profile. [2] Velocity profiles of fluid movement describe the spatial distribution of instantaneous velocity vectors across a given cross section. The size and shape of the geometric configuration that the fluid is traveling through, the fluid properties (such as viscosity), physical disruptions to the flow, and engineered components (e.g. pumps) that add energy to the flow are factors that determine what the velocity profile looks like. Generally, in encased flows, instantaneous velocity vectors are larger in magnitude in the middle of the profile due to the effect of friction from the material of the pipe, duct, or channel walls on nearby layers of fluid. In tropospheric atmospheric flows, velocity increases with elevation from ground level due to friction from obstructions like trees and hills slowing down airflow near the surface. The level of friction is quantified by a parameter called the "roughness length." Streamlines connect velocities and are tangential to the instantaneous direction of multiple velocity vectors. They can be curved and do not always follow the shape of the container. Additionally, they only exist in steady flows, i.e. flows whose velocity vectors do not change over time. In a laminar flow, all particles of the fluid are traveling in parallel lines which gives rise to parallel streamlines. In a turbulent flow, particles are traveling in random and chaotic directions which gives rise to curved, spiraling, and often intersecting streamlines.
The Reynolds number, a ratio indicating the relationship between viscous and inertial forces in a fluid, can be used to predict the transition from laminar to turbulent flow. Laminar flows occur at low Reynold's numbers where viscous forces dominate, and turbulent flows occur at high Reynold's numbers where inertial forces dominate. The range of Reynold's number that defines each type of flow depends on whether the air is moving through a pipe, wide duct, open channel, or around airfoils. Reynold's number can also characterize an object (for example, a particle under the effect of gravitational settling) moving through a fluid. This number and related concepts can be applied to studying flow in systems of all scales. Transitional flow is a mixture of turbulence in the center of the velocity profile and laminar flow near the edges. Each of these three flows have distinct mechanisms of frictional energy losses that give rise to different behavior. As a result, different equations are used to predict and quantify the behavior of each type of flow.
The speed at which a fluid flows past an object varies with distance from the object's surface. The region surrounding an object where the air speed approaches zero is known as the boundary layer. [3] It is here that surface friction most affects flow; irregularities in surfaces may affect boundary layer thickness, and hence act to disrupt flow. [2]
Typical units to express airflow are: [4]
Airflow can also be described in terms of air changes per hour (ACH), indicating full replacement of the volume of air filling the space in question. This unit is frequently used in the field of building science, with higher ACH values corresponding to leakier envelopes which are typical of older buildings that are less tightly sealed.
The instrument that measures airflow is called an airflow meter. Anemometers are also used to measure wind speed and indoor airflow.
There are a variety of types, including straight probe anemometers, designed to measure air velocity, differential pressure, temperature, and humidity; rotating vane anemometers, used for measuring air velocity and volumetric flow; and hot-sphere anemometers.
Anemometers may use ultrasound or resistive wire to measure the energy transfer between the measurement device and the passing particles. A hot-wire anemometer, for example, registers decreases in wire temperature, which can be translated into airflow velocity by analyzing the rate of change. Convective cooling is a function of airflow rate, and the electrical resistance of most metals is dependent upon the temperature of the metal, which is affected by the convective cooling. [5] Engineers have taken advantage of these physical phenomena in the design and use of hot-wire anemometers. Some tools are capable of calculating air flow, wet bulb temperature, dew point, and turbulence.
Air flow can be simulated using Computational Fluid Dynamics (CFD) modeling, or observed experimentally through the operation of a wind tunnel . This may be used to predict airflow patterns around automobiles, aircraft, and marine craft, as well as air penetration of a building envelope. Because CFD models "also track the flow of solids through a system," [6] they can be used for analysis of pollution concentrations in indoor and outdoor environments. Particulate matter generated indoors generally comes from cooking with oil and combustion activities such as burning candles or firewood. In outdoor environments, particulate matter comes from direct sources such as internal combustion engine vehicles’ (ICEVs) tailpipe emissions from burning fuel (petroleum products), windblow and soil, and indirectly from atmospheric oxidation of volatile organic compounds (VOCs), sulfur dioxide (SO2), and nitrogen oxide (NOx) emissions.
One type of equipment that regulates the airflow in ducts is called a damper. The damper can be used to increase, decrease or completely stop the flow of air. A more complex device that can not only regulate the airflow but also has the ability to generate and condition airflow is an air handler. Fans also generate flows by "producing air flows with high volume and low pressure (although higher than ambient pressure)." This pressure differential induced by the fan is what causes air to flow. The direction of airflow is determined by the direction of the pressure gradient. Total or static pressure rise, and therefore by extension airflow rate, is determined primarily by the fan speed measured in revolutions per minute (RPM). [7] In control of HVAC systems to modulate the airflow rate, one typically changes the fan speed, which often come in 3-category settings such as low, medium, and high.
Measuring the airflow is necessary in many applications such as ventilation (to determine how much air is being replaced), pneumatic conveying (to control the air velocity and phase of transport) [8] and engines (to control the Air–fuel ratio).
Aerodynamics is the branch of fluid dynamics (physics) that is specifically concerned with the measurement, simulation, and control of airflow. [3] Managing airflow is of concern to many fields, including meteorology, aeronautics, medicine, [9] mechanical engineering, civil engineering, environmental engineering and building science.
In building science, airflow is often addressed in terms of its desirability, for example in contrasting ventilation and infiltration. Ventilation is defined as the desired flow of fresh outdoor supply air to another, typically indoor, space, along with the simultaneous expulsion of exhaust air from indoors to the outdoors. This may be achieved through mechanical means (i.e. the use of a louver or damper for air intake and a fan to induce flow through ductwork) or through passive strategies (also known as natural ventilation). While natural ventilation has economic benefits over mechanical ventilation because it typically requires far less operational energy consumption, it can only be utilized during certain times of day and under certain outdoor conditions. If there is a large temperature difference between the outdoor air and indoor conditioned air, the use of natural ventilation may cause unintentional heating or cooling loads on a space and increase HVAC energy consumption to maintain comfortable temperatures within ranges determined by the heating and cooling setpoint temperatures. Natural ventilation also has the flaw that its feasibility is dependent on outdoor conditions; if outdoor air is significantly polluted with ground-level ozone concentrations from transportation related emissions or particulate matter from wildfires for example, residential and commercial building occupants may have to keep doors and windows closed to preserve indoor environmental quality (IEQ). By contrast, air infiltration is characterized as the uncontrolled influx of air through an inadequately-sealed building envelope, usually coupled with unintentional leakage of conditioned air from the interior of a building to the exterior. [10]
Buildings may be ventilated using mechanical systems, passive systems or strategies, or a combination of the two. [11]
Mechanical ventilation uses fans to induce flow of air into and through a building. Duct configuration and assembly affect air flow rates through the system. Dampers, valves, joints and other geometrical or material changes within a duct can lead to flow pressure (energy) losses. [2]
Passive ventilation strategies take advantage of inherent characteristics of air, specifically thermal buoyancy and pressure differentials, to evacuate exhaust air from within a building. Stack effect equates to using chimneys or similar tall spaces with openings near the top to passively draw exhaust air up and out of the space, thanks to the fact that air will rise when its temperature increases (as the volume increases and pressure decreases). Wind-driven passive ventilation relies on building configuration, orientation, and aperture distribution to take advantage of outdoor air movement. Cross-ventilation requires strategically-positioned openings aligned with local wind patterns.
Airflow is a factor of concern when designing to meet occupant thermal comfort standards (such as ASHRAE 55). Varying rates of air movement may positively or negatively impact individuals’ perception of warmth or coolness, and hence their comfort. [12] Air velocity interacts with air temperature, relative humidity, radiant temperature of surrounding surfaces and occupants, and occupant skin conductivity, resulting in particular thermal sensations.
Sufficient, properly-controlled and designed airflow (ventilation) is important for overall Indoor Environmental Quality (IEQ) and Indoor Air Quality (IAQ), in that it provides the necessary supply of fresh air and effectively evacuates exhaust air. [2]
In meteorology, an anemometer is a device that measures wind speed and direction. It is a common instrument used in weather stations. The earliest known description of an anemometer was by Italian architect and author Leon Battista Alberti (1404–1472) in 1450.
Laminar flow is the property of fluid particles in fluid dynamics to follow smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another smoothly. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface. Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection.
A pitot tube measures fluid flow velocity. It was invented by French engineer Henri Pitot in the early 18th century, and modified to its modern form in the mid-19th century by Henry Darcy. It is widely used to determine the airspeed of aircraft; the water speed of boats; and the flow velocity of liquids, air, and gases in industry.
Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.
Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:
Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of the indoor environment, or other objectives.
A blower door is a machine used to perform a building air leakage test. It can also be used to measure airflow between building zones, to test ductwork airtightness and to help physically locate air leakage sites in the building envelope.
A mass (air) flow sensor (MAF) is a sensor used to determine the mass flow rate of air entering a fuel-injected internal combustion engine.
A diffuser is "a device for reducing the velocity and increasing the static pressure of a fluid passing through a system”. The fluid's static pressure rise as it passes through a duct is commonly referred to as pressure recovery. In contrast, a nozzle is used to increase the discharge velocity and lower the pressure of a fluid passing through it.
Variable air volume (VAV) is a type of heating, ventilating, and/or air-conditioning (HVAC) system. Unlike constant air volume (CAV) systems, which supply a constant airflow at a variable temperature, VAV systems vary the airflow at a constant or varying temperature. The advantages of VAV systems over constant-volume systems include more precise temperature control, reduced compressor wear, lower energy consumption by system fans, less fan noise, and additional passive dehumidification.
In fluid dynamics, friction loss is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment.
Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces.
In respiratory physiology, airway resistance is the resistance of the respiratory tract to airflow during inhalation and exhalation. Airway resistance can be measured using plethysmography.
Industrial fans and blowers are machines whose primary function is to provide and accommodate a large flow of air or gas to various parts of a building or other structures. This is achieved by rotating a number of blades, connected to a hub and shaft, and driven by a motor or turbine. The flow rates of these mechanical fans range from approximately 200 cubic feet (5.7 m3) to 2,000,000 cubic feet (57,000 m3) per minute. A blower is another name for a fan that operates where the resistance to the flow is primarily on the downstream side of the fan.
Air changes per hour, abbreviated ACPH or ACH, or air change rate is the number of times that the total air volume in a room or space is completely removed and replaced in an hour. If the air in the space is either uniform or perfectly mixed, air changes per hour is a measure of how many times the air within a defined space is replaced each hour. Perfectly mixed air refers to a theoretical condition where supply air is instantly and uniformly mixed with the air already present in a space, so that conditions such as age of air and concentration of pollutants are spatially uniform.
In fluid dynamics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.
HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.
Ductwork airtightness can be defined as the resistance to inward or outward air leakage through the ductwork envelope. This air leakage is driven by differential pressures across the ductwork envelope due to the combined effects of stack and fan operation.
Cross ventilation is a natural phenomenon where wind, fresh air or a breeze enters upon an opening, such as a window, and flows directly through the space and exits through an opening on the opposite side of the building. This produces a cool stream of air and as well as a current across the room from the exposed area to the sheltered area.
Ventilative cooling is the use of natural or mechanical ventilation to cool indoor spaces. The use of outside air reduces the cooling load and the energy consumption of these systems, while maintaining high quality indoor conditions; passive ventilative cooling may eliminate energy consumption. Ventilative cooling strategies are applied in a wide range of buildings and may even be critical to realize renovated or new high efficient buildings and zero-energy buildings (ZEBs). Ventilation is present in buildings mainly for air quality reasons. It can be used additionally to remove both excess heat gains, as well as increase the velocity of the air and thereby widen the thermal comfort range. Ventilative cooling is assessed by long-term evaluation indices. Ventilative cooling is dependent on the availability of appropriate external conditions and on the thermal physical characteristics of the building.