Sulfur dioxide

Last updated

Contents

Sulfur dioxide
Sulfur-dioxide-2D.svg
Sulfur-dioxide-3D-vdW.png
Sulfur-dioxide-ve-B-2D.png
Names
IUPAC name
Sulfur dioxide
Other names
Sulfurous anhydride
Sulfur(IV) oxide
Identifiers
3D model (JSmol)
3535237
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.028.359 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-195-2
E number E220 (preservatives)
1443
KEGG
MeSH Sulfur+dioxide
PubChem CID
RTECS number
  • WS4550000
UNII
UN number 1079, 2037
  • InChI=1S/O2S/c1-3-2 Yes check.svgY
    Key: RAHZWNYVWXNFOC-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/O2S/c1-3-2
    Key: RAHZWNYVWXNFOC-UHFFFAOYAT
  • O=S=O
Properties
SO
2
Molar mass 64.066 g mol−1
AppearanceColorless and pungent gas
Odor Pungent; similar to a just-struck match [1]
Density 2.6288 kg m−3[ citation needed ]
Melting point −72 °C; −98 °F; 201 K
Boiling point −10 °C (14 °F; 263 K)
94 g/L [2]
forms sulfurous acid
Vapor pressure 230 kPa at 10 °C; 330 kPa at 20 °C; 462 kPa at 30 °C; 630 kPa at 40 °C [3]
Acidity (pKa)~1.81
Basicity (pKb)~12.19
18.2·10−6 cm3/mol
Viscosity 12.82 μPa·s [4]
Structure
C2v
Digonal
Dihedral
1.62 D
Thermochemistry
Std molar
entropy
(S298)
248.223 J K−1 mol−1
−296.81 kJ mol−1
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-skull.svg
Danger
H314, H331 [5]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
0
0
Lethal dose or concentration (LD, LC):
3000 ppm (mouse, 30 min)
2520 ppm (rat, 1 hr) [6]
993 ppm (rat, 20 min)
611 ppm (rat, 5 hr)
764 ppm (mouse, 20 min)
1000 ppm (human, 10 min)
3000 ppm (human, 5 min) [6]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 5 ppm (13 mg/m3) [7]
REL (Recommended)
TWA 2 ppm (5 mg/m3) ST 5 ppm (13 mg/m3) [7]
IDLH (Immediate danger)
100 ppm [7]
Related compounds
Related sulfur oxides
Sulfur monoxide
Sulfur trioxide
Disulfur monoxide
Related compounds
Ozone

Selenium dioxide
Sulfurous acid
Tellurium dioxide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula S O
2
. It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic activity and is produced as a by-product of copper extraction and the burning of sulfur-bearing fossil fuels. [8]

Structure and bonding

SO2 is a bent molecule with C2v symmetry point group. A valence bond theory approach considering just s and p orbitals would describe the bonding in terms of resonance between two resonance structures.

Two resonance structures of sulfur dioxide Sulfur-dioxide-resonance-2D.svg
Two resonance structures of sulfur dioxide

The sulfur–oxygen bond has a bond order of 1.5. There is support for this simple approach that does not invoke d orbital participation. [9] In terms of electron-counting formalism, the sulfur atom has an oxidation state of +4 and a formal charge of +1.

Occurrence

The blue auroral glows of Io's upper atmosphere are caused by volcanic sulfur dioxide. Io Aurorae color.jpg
The blue auroral glows of Io's upper atmosphere are caused by volcanic sulfur dioxide.

Sulfur dioxide is found on Earth and exists in very small concentrations in the atmosphere at about 15 ppb. [10]

On other planets, sulfur dioxide can be found in various concentrations, the most significant being the atmosphere of Venus, where it is the third-most abundant atmospheric gas at 150 ppm. There, it reacts with water to form clouds of sulfuric acid, and is a key component of the planet's global atmospheric sulfur cycle and contributes to global warming. [11] It has been implicated as a key agent in the warming of early Mars, with estimates of concentrations in the lower atmosphere as high as 100 ppm, [12] though it only exists in trace amounts. On both Venus and Mars, as on Earth, its primary source is thought to be volcanic. The atmosphere of Io, a natural satellite of Jupiter, is 90% sulfur dioxide [13] and trace amounts are thought to also exist in the atmosphere of Jupiter. The James Webb Space Telescope has observed the presence of sulfur dioxide on the exoplanet WASP-39b, where it is formed through photochemistry in the planet's atmosphere. [14]

As an ice, it is thought to exist in abundance on the Galilean moons—as subliming ice or frost on the trailing hemisphere of Io, [15] and in the crust and mantle of Europa, Ganymede, and Callisto, possibly also in liquid form and readily reacting with water. [16]

Production

Sulfur dioxide is primarily produced for sulfuric acid manufacture (see contact process). In the United States in 1979, 23.6 million metric tons (26 million U.S. short tons) of sulfur dioxide were used in this way, compared with 150,000 metric tons (165,347 U.S. short tons) used for other purposes. Most sulfur dioxide is produced by the combustion of elemental sulfur. Some sulfur dioxide is also produced by roasting pyrite and other sulfide ores in air. [17]

An experiment showing burning of sulfur in oxygen. A flow-chamber joined to a gas washing bottle (filled with a solution of methyl orange) is being used. The product is sulfur dioxide (SO2) with some traces of sulfur trioxide (SO3). The "smoke" that exits the gas washing bottle is, in fact, a sulfuric acid fog generated in the reaction.

Combustion routes

Sulfur dioxide is the product of the burning of sulfur or of burning materials that contain sulfur:

18S8 + O2SO2, ΔH = −297 kJ/mol

To aid combustion, liquified sulfur (140–150 °C, 284-302 °F) is sprayed through an atomizing nozzle to generate fine drops of sulfur with a large surface area. The reaction is exothermic, and the combustion produces temperatures of 1000–1600 °C (1832–2912 °F). The significant amount of heat produced is recovered by steam generation that can subsequently be converted to electricity. [17]

The combustion of hydrogen sulfide and organosulfur compounds proceeds similarly. For example:

H2S + 32O2SO2 + H2O

The roasting of sulfide ores such as pyrite, sphalerite, and cinnabar (mercury sulfide) also releases SO2: [18]

2 FeS2 + 112O2Fe2O3 + 4 SO2
ZnS + 32O2ZnO + SO2
HgS + O2 → Hg + SO2
2 FeS + 72O2Fe2O3 + 2 SO2

A combination of these reactions is responsible for the largest source of sulfur dioxide, volcanic eruptions. These events can release millions of tons of SO2.

Reduction of higher oxides

Sulfur dioxide can also be a byproduct in the manufacture of calcium silicate cement; CaSO4 is heated with coke and sand in this process:

2 CaSO4 + 2 SiO2 + C → 2 CaSiO3 + 2 SO2 + CO2

Until the 1970s, commercial quantities of sulfuric acid and cement were produced by this process in Whitehaven, England. Upon being mixed with shale or marl, and roasted, the sulfate liberated sulfur dioxide gas, used in sulfuric acid production, the reaction also produced calcium silicate, a precursor in cement production. [19]

On a laboratory scale, the action of hot concentrated sulfuric acid on copper turnings produces sulfur dioxide.

Cu + 2 H2SO4CuSO4 + SO2 + 2 H2O

Tin also reacts with concentrated sulfuric acid but it produces tin(II) sulfate which can later be pyrolyzed at 360°C into tin dioxide and dry sulfur dioxide.

Sn + H2SO4SnSO4 + H2
SnSO4SnO2 + SO2

From sulfites

The reverse reaction occurs upon acidification:

H+ + HSO3 → SO2 + H2O

Reactions

Sulfites results by the action of aqueous base on sulfur dioxide:

SO2 + 2 NaOH → Na2SO3 + H2O

Sulfur dioxide is a mild but useful reducing agent. It is oxidized by halogens to give the sulfuryl halides, such as sulfuryl chloride:

SO2 + Cl2 → SO2Cl2

Sulfur dioxide is the oxidising agent in the Claus process, which is conducted on a large scale in oil refineries. Here, sulfur dioxide is reduced by hydrogen sulfide to give elemental sulfur:

SO2 + 2 H2S → 3 S + 2 H2O

The sequential oxidation of sulfur dioxide followed by its hydration is used in the production of sulfuric acid.

SO2 + H2O + 12O2H2SO4

Sulfur dioxide dissolves in water to give "sulfurous acid", which cannot be isolated and is instead an acidic solution of bisulfite, and possibly sulfite, ions.

SO2 + H2O ⇌ HSO3 + H+          Ka = 1.54×10−2; pKa = 1.81

Laboratory reactions

Sulfur dioxide is one of the few common acidic yet reducing gases. It turns moist litmus pink (being acidic), then white (due to its bleaching effect). It may be identified by bubbling it through a dichromate solution, turning the solution from orange to green (Cr3+ (aq)). It can also reduce ferric ions to ferrous. [20]

Sulfur dioxide can react with certain 1,3-dienes in a cheletropic reaction to form cyclic sulfones. This reaction is exploited on an industrial scale for the synthesis of sulfolane, which is an important solvent in the petrochemical industry.

Cheletropic reaction of butadiene with SO2.svg

Sulfur dioxide can bind to metal ions as a ligand to form metal sulfur dioxide complexes, typically where the transition metal is in oxidation state 0 or +1. Many different bonding modes (geometries) are recognized, but in most cases, the ligand is monodentate, attached to the metal through sulfur, which can be either planar and pyramidal η 1. [8] As a η1-SO2 (S-bonded planar) ligand sulfur dioxide functions as a Lewis base using the lone pair on S. SO2 functions as a Lewis acids in its η1-SO2 (S-bonded pyramidal) bonding mode with metals and in its 1:1 adducts with Lewis bases such as dimethylacetamide and trimethyl amine. When bonding to Lewis bases the acid parameters of SO2 are EA = 0.51 and EA = 1.56.

Uses

The overarching, dominant use of sulfur dioxide is in the production of sulfuric acid. [17]

Precursor to sulfuric acid

Sulfur dioxide is an intermediate in the production of sulfuric acid, being converted to sulfur trioxide, and then to oleum, which is made into sulfuric acid. Sulfur dioxide for this purpose is made when sulfur combines with oxygen. The method of converting sulfur dioxide to sulfuric acid is called the contact process. Several million tons are produced annually for this purpose.

Food preservative

Sulfur dioxide is sometimes used as a preservative for dried apricots, dried figs, and other dried fruits, owing to its antimicrobial properties and ability to prevent oxidation, [21] and is called E220 [22] when used in this way in Europe. As a preservative, it maintains the colorful appearance of the fruit and prevents rotting. It is also added to sulfured molasses. Sublimed sulfite is ignited and burned in an enclosed space with the fruits. This is usually done outdoors. [23] Fruits may be sulfured by dipping them into an either sodium bisulfite, sodium sulfite or sodium metabisulfite. [23]

Winemaking

Sulfur dioxide was first used in winemaking by the Romans, when they discovered that burning sulfur candles inside empty wine vessels keeps them fresh and free from vinegar smell. [24]

It is still an important compound in winemaking, and is measured in parts per million (ppm) in wine. It is present even in so-called unsulfurated wine at concentrations of up to 10 mg/L. [25] It serves as an antibiotic and antioxidant, protecting wine from spoilage by bacteria and oxidation - a phenomenon that leads to the browning of the wine and a loss of cultivar specific flavors. [26] [27] Its antimicrobial action also helps minimize volatile acidity. Wines containing sulfur dioxide are typically labeled with "containing sulfites".

Sulfur dioxide exists in wine in free and bound forms, and the combinations are referred to as total SO2. Binding, for instance to the carbonyl group of acetaldehyde, varies with the wine in question. The free form exists in equilibrium between molecular SO2 (as a dissolved gas) and bisulfite ion, which is in turn in equilibrium with sulfite ion. These equilibria depend on the pH of the wine. Lower pH shifts the equilibrium towards molecular (gaseous) SO2, which is the active form, while at higher pH more SO2 is found in the inactive sulfite and bisulfite forms. The molecular SO2 is active as an antimicrobial and antioxidant, and this is also the form which may be perceived as a pungent odor at high levels. Wines with total SO2 concentrations below 10 ppm do not require "contains sulfites" on the label by US and EU laws. The upper limit of total SO2 allowed in wine in the US is 350 ppm; in the EU it is 160 ppm for red wines and 210 ppm for white and rosé wines. In low concentrations, SO2 is mostly undetectable in wine, but at free SO2 concentrations over 50 ppm, SO2 becomes evident in the smell and taste of wine.[ citation needed ]

SO2 is also a very important compound in winery sanitation. Wineries and equipment must be kept clean, and because bleach cannot be used in a winery due to the risk of cork taint, [28] a mixture of SO2, water, and citric acid is commonly used to clean and sanitize equipment. Ozone (O3) is now used extensively for sanitizing in wineries due to its efficacy, and because it does not affect the wine or most equipment. [29]

As a reducing agent

Sulfur dioxide is also a good reductant. In the presence of water, sulfur dioxide is able to decolorize substances. Specifically, it is a useful reducing bleach for papers and delicate materials such as clothes. This bleaching effect normally does not last very long. Oxygen in the atmosphere reoxidizes the reduced dyes, restoring the color. In municipal wastewater treatment, sulfur dioxide is used to treat chlorinated wastewater prior to release. Sulfur dioxide reduces free and combined chlorine to chloride. [30]

Sulfur dioxide is fairly soluble in water, and by both IR and Raman spectroscopy; the hypothetical sulfurous acid, H2SO3, is not present to any extent. However, such solutions do show spectra of the hydrogen sulfite ion, HSO3, by reaction with water, and it is in fact the actual reducing agent present:

SO2 + H2O ⇌ HSO3 + H+

As a fumigant

In the beginning of the 20th century, sulfur dioxide was used in Buenos Aires as a fumigant to kill rats that carried the Yersinia pestis bacterium, which causes bubonic plague. The application was successful, and the application of this method was extended to other areas in South America. In Buenos Aires, where these apparatuses were known as Sulfurozador, but later also in Rio de Janeiro, New Orleans and San Francisco, the sulfur dioxide treatment machines were brought into the streets to enable extensive disinfection campaigns, with effective results. [31]

Biochemical and biomedical roles

Sulfur dioxide or its conjugate base bisulfite is produced biologically as an intermediate in both sulfate-reducing organisms and in sulfur-oxidizing bacteria, as well. The role of sulfur dioxide in mammalian biology is not yet well understood. [32] Sulfur dioxide blocks nerve signals from the pulmonary stretch receptors and abolishes the Hering–Breuer inflation reflex.

It is considered that endogenous sulfur dioxide plays a significant physiological role in regulating cardiac and blood vessel function, and aberrant or deficient sulfur dioxide metabolism can contribute to several different cardiovascular diseases, such as arterial hypertension, atherosclerosis, pulmonary arterial hypertension, and stenocardia. [33]

It was shown that in children with pulmonary arterial hypertension due to congenital heart diseases the level of homocysteine is higher and the level of endogenous sulfur dioxide is lower than in normal control children. Moreover, these biochemical parameters strongly correlated to the severity of pulmonary arterial hypertension. Authors considered homocysteine to be one of useful biochemical markers of disease severity and sulfur dioxide metabolism to be one of potential therapeutic targets in those patients. [34]

Endogenous sulfur dioxide also has been shown to lower the proliferation rate of endothelial smooth muscle cells in blood vessels, via lowering the MAPK activity and activating adenylyl cyclase and protein kinase A. [35] Smooth muscle cell proliferation is one of important mechanisms of hypertensive remodeling of blood vessels and their stenosis, so it is an important pathogenetic mechanism in arterial hypertension and atherosclerosis.

Endogenous sulfur dioxide in low concentrations causes endothelium-dependent vasodilation. In higher concentrations it causes endothelium-independent vasodilation and has a negative inotropic effect on cardiac output function, thus effectively lowering blood pressure and myocardial oxygen consumption. The vasodilating and bronchodilating effects of sulfur dioxide are mediated via ATP-dependent calcium channels and L-type ("dihydropyridine") calcium channels. Endogenous sulfur dioxide is also a potent antiinflammatory, antioxidant and cytoprotective agent. It lowers blood pressure and slows hypertensive remodeling of blood vessels, especially thickening of their intima. It also regulates lipid metabolism. [36]

Endogenous sulfur dioxide also diminishes myocardial damage, caused by isoproterenol adrenergic hyperstimulation, and strengthens the myocardial antioxidant defense reserve. [37]

As a reagent and solvent in the laboratory

Sulfur dioxide is a versatile inert solvent widely used for dissolving highly oxidizing salts. It is also used occasionally as a source of the sulfonyl group in organic synthesis. Treatment of aryl diazonium salts with sulfur dioxide and cuprous chloride yields the corresponding aryl sulfonyl chloride, for example: [38]

Preparation of m-trifluoromethylbenzenesulfonyl chloride.svg

As a result of its very low Lewis basicity, it is often used as a low-temperature solvent/diluent for superacids like magic acid (FSO3H/SbF5), allowing for highly reactive species like tert-butyl cation to be observed spectroscopically at low temperature (though tertiary carbocations do react with SO2 above about –30 °C, and even less reactive solvents like SO2ClF must be used at these higher temperatures). [39]

As a refrigerant

Being easily condensed and possessing a high heat of evaporation, sulfur dioxide is a candidate material for refrigerants. Before the development of chlorofluorocarbons, sulfur dioxide was used as a refrigerant in home refrigerators.

Safety

US Geological Survey volunteer tests for sulfur dioxide after the 2018 lower Puna eruption. 20180519 USGS Leilani Estates Hawaii Volcanic EruptionDSC 0411 medium.jpg
US Geological Survey volunteer tests for sulfur dioxide after the 2018 lower Puna eruption.

Ingestion

In the United States, the Center for Science in the Public Interest lists the two food preservatives, sulfur dioxide and sodium bisulfite, as being safe for human consumption except for certain asthmatic individuals who may be sensitive to them, especially in large amounts. [40] Symptoms of sensitivity to sulfiting agents, including sulfur dioxide, manifest as potentially life-threatening trouble breathing within minutes of ingestion. [41] Sulphites may also cause symptoms in non-asthmatic individuals, namely dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhea, and even life-threatening anaphylaxis. [42]

Inhalation

Incidental exposure to sulfur dioxide is routine, e.g. the smoke from matches, coal, and sulfur-containing fuels like bunker fuel. Relative to other chemicals, it is only mildly toxic and requires high concentrations to be actively hazardous. [43] However, its ubiquity makes it a major air pollutant with significant impacts on human health. [44]

In 2008, the American Conference of Governmental Industrial Hygienists reduced the short-term exposure limit to 0.25 parts per million (ppm). In the US, the OSHA set the PEL at 5 ppm (13 mg/m3) time-weighted average. Also in the US, NIOSH set the IDLH at 100 ppm. [45] In 2010, the EPA "revised the primary SO2 NAAQS by establishing a new one-hour standard at a level of 75 parts per billion (ppb). EPA revoked the two existing primary standards because they would not provide additional public health protection given a one-hour standard at 75 ppb." [44]

Environmental role

Air pollution

Volcanic "injection". Volcanic injection.svg
Volcanic "injection".

Major volcanic eruptions have an overwhelming effect on sulfate aerosol concentrations in the years when they occur: eruptions ranking 4 or greater on the Volcanic Explosivity Index inject SO2 and water vapor directly into the stratosphere, where they react to create sulfate aerosol plumes. [46] Volcanic emissions vary significantly in composition, and have complex chemistry due to the presence of ash particulates and a wide variety of other elements in the plume. Only stratovolcanoes containing primarily felsic magmas are responsible for these fluxes, as mafic magma erupted in shield volcanoes doesn't result in plumes which reach the stratosphere. [47] However, before the Industrial Revolution, dimethyl sulfide pathway was the largest contributor to sulfate aerosol concentrations in a more average year with no major volcanic activity. According to the IPCC First Assessment Report, published in 1990, volcanic emissions usually amounted to around 10 million tons in 1980s, while dimethyl sulfide amounted to 40 million tons. Yet, by that point, the global human-caused emissions of sulfur into the atmosphere became "at least as large" as all natural emissions of sulfur-containing compounds combined: they were at less than 3 million tons per year in 1860, and then they increased to 15 million tons in 1900, 40 million tons in 1940 and about 80 millions in 1980. The same report noted that "in the industrialized regions of Europe and North America, anthropogenic emissions dominate over natural emissions by about a factor of ten or even more". [48] In the eastern United States, sulfate particles were estimated to account for 25% or more of all air pollution. [49] Meanwhile, the Southern Hemisphere had much lower concentrations due to being much less densely populated, with an estimated 90% of the human population in the north. In the early 1990s, anthropogenic sulfur dominated in the Northern Hemisphere, where only 16% of annual sulfur emissions were natural, yet amounted for less than half of the emissions in the Southern Hemisphere. [50]

Acid rain-damaged forest in Europe's Black Triangle. Acid rain woods1.JPG
Acid rain-damaged forest in Europe's Black Triangle.

Such an increase in sulfate aerosol emissions had a variety of effects. At the time, the most visible one was acid rain, caused by precipitation from clouds carrying high concentrations of sulfate aerosols in the troposphere. [51] At its peak, acid rain has eliminated brook trout and some other fish species and insect life from lakes and streams in geographically sensitive areas, such as Adirondack Mountains in the United States. [52] Acid rain worsens soil function as some of its microbiota is lost and heavy metals like aluminium are mobilized (spread more easily) while essential nutrients and minerals such as magnesium can leach away because of the same. Ultimately, plants unable to tolerate lowered pH are killed, with montane forests being some of the worst-affected ecosystems due to their regular exposure to sulfate-carrying fog at high altitudes. [53] [54] [55] [56] [57] While acid rain was too dilute to affect human health directly, breathing smog or even any air with elevated sulfate concentrations is known to contribute to heart and lung conditions, including asthma and bronchitis. [49] Further, this form of pollution is linked to preterm birth and low birth weight, with a study of 74,671 pregnant women in Beijing finding that every additional 100 µg/m3 of SO2 in the air reduced infants' weight by 7.3 g, making it and other forms of air pollution the largest attributable risk factor for low birth weight ever observed. [58]

Control measures

Early 2010s estimates of past and future anthropogenic global sulfur dioxide emissions, including the Representative Concentration Pathways. While no climate change scenario may reach Maximum Feasible Reductions (MFRs), all assume steep declines from today's levels. By 2019, sulfate emission reductions were confirmed to proceed at a very fast rate. Estimates of past and future SO2 global anthropogenic emissions.png
Early 2010s estimates of past and future anthropogenic global sulfur dioxide emissions, including the Representative Concentration Pathways. While no climate change scenario may reach Maximum Feasible Reductions (MFRs), all assume steep declines from today's levels. By 2019, sulfate emission reductions were confirmed to proceed at a very fast rate.

Due largely to the US EPA's Acid Rain Program, the U.S. has had a 33% decrease in emissions between 1983 and 2002 (see table). This improvement resulted in part from flue-gas desulfurization, a technology that enables SO2 to be chemically bound in power plants burning sulfur-containing coal or petroleum.

YearSO2
197031,161,000 short tons (28.3 Mt)
198025,905,000 short tons (23.5 Mt)
199023,678,000 short tons (21.5 Mt)
199618,859,000 short tons (17.1 Mt)
199719,363,000 short tons (17.6 Mt)
199819,491,000 short tons (17.7 Mt)
199918,867,000 short tons (17.1 Mt)

In particular, calcium oxide (lime) reacts with sulfur dioxide to form calcium sulfite:

CaO + SO2 → CaSO3

Aerobic oxidation of the CaSO3 gives CaSO4, anhydrite. Most gypsum sold in Europe comes from flue-gas desulfurization.

To control sulfur emissions, dozens of methods with relatively high efficiencies have been developed for fitting of coal-fired power plants. [60] Sulfur can be removed from coal during burning by using limestone as a bed material in fluidized bed combustion. [61]

Sulfur can also be removed from fuels before burning, preventing formation of SO2 when the fuel is burnt. The Claus process is used in refineries to produce sulfur as a byproduct. The Stretford process has also been used to remove sulfur from fuel. Redox processes using iron oxides can also be used, for example, Lo-Cat [62] or Sulferox. [63]

Fuel additives such as calcium additives and magnesium carboxylate may be used in marine engines to lower the emission of sulfur dioxide gases into the atmosphere. [64]

Impact on climate change

This figure shows the level of agreement between a climate model driven by five factors and the historical temperature record. The negative component identified as "sulfate" is associated with the aerosol emissions blamed for global dimming. Climate Change Attribution.png
This figure shows the level of agreement between a climate model driven by five factors and the historical temperature record. The negative component identified as "sulfate" is associated with the aerosol emissions blamed for global dimming.
In the 1980s, research in Israel and the Netherlands revealed an apparent reduction in the amount of sunlight, [65] and Atsumu Ohmura, a geography researcher at the Swiss Federal Institute of Technology, found that solar radiation striking the Earth's surface had declined by more than 10% over the three previous decades, even as the global temperature had been generally rising since the 1970s. [66] In the 1990s, this was followed by the papers describing multi-decade declines in Estonia, [67] Germany [68] and across the former Soviet Union, [69] which prompted the researcher Gerry Stanhill to coin the term "global dimming". [70] Subsequent research estimated an average reduction in sunlight striking the terrestrial surface of around 4–5% per decade over late 1950s–1980s, and 2–3% per decade when 1990s were included. [70] [71] [72] [73] Notably, solar radiation at the top of the atmosphere did not vary by more than 0.1-0.3% in all that time, strongly suggesting that the reasons for the dimming were on Earth. [74] Additionally, only visible light and infrared radiation were dimmed, rather than the ultraviolet part of the spectrum. [75]
Sulfur dioxide in the world on April 15, 2017. Note that sulfur dioxide moves through the atmosphere with prevailing winds and thus local sulfur dioxide distributions vary day to day with weather patterns and seasonality. SulufrDioxide2017.png
Sulfur dioxide in the world on April 15, 2017. Note that sulfur dioxide moves through the atmosphere with prevailing winds and thus local sulfur dioxide distributions vary day to day with weather patterns and seasonality.
Global dimming had been widely attributed to the increased presence of aerosol particles in Earth's atmosphere, predominantly those of sulfates. [76] While natural dust is also an aerosol with some impacts on climate, and volcanic eruptions considerably increase sulfate concentrations in the short term, these effects have been dwarfed by increases in sulfate emissions since the start of the Industrial Revolution. [77] According to the IPCC First Assessment Report, the global human-caused emissions of sulfur into the atmosphere were less than 3 million tons per year in 1860, yet they increased to 15 million tons in 1900, 40 million tons in 1940 and about 80 millions in 1980. This meant that the human-caused emissions became "at least as large" as all natural emissions of sulfur-containing compounds: the largest natural source, emissions of dimethyl sulfide from the ocean, was estimated at 40 million tons per year, while volcano emissions were estimated at 10 million tons. Moreover, that was the average figure: according to the report, "in the industrialized regions of Europe and North America, anthropogenic emissions dominate over natural emissions by about a factor of ten or even more". [78]

Hydrological cycle

Sulfate aerosols have decreased precipitation over most of Asia (red), but increased it over some parts of Central Asia (blue). Xie et al 2022 Asian aerosols.png
Sulfate aerosols have decreased precipitation over most of Asia (red), but increased it over some parts of Central Asia (blue).
On regional and global scale, air pollution can affect the water cycle, in a manner similar to some natural processes. One example is the impact of Sahara dust on hurricane formation: air laden with sand and mineral particles moves over the Atlantic Ocean, where they block some of the sunlight from reaching the water surface, slightly cooling it and dampening the development of hurricanes. [80] Likewise, it has been suggested since the early 2000s that since aerosols decrease solar radiation over the ocean and hence reduce evaporation from it, they would be "spinning down the hydrological cycle of the planet." [81] [82] In 2011, it was found that anthropogenic aerosols had been the predominant factor behind 20th century changes in rainfall over the Atlantic Ocean sector, [83] when the entire tropical rain belt shifted southwards between 1950 and 1985, with a limited northwards shift afterwards. [84] Future reductions in aerosol emissions are expected to result in a more rapid northwards shift, with limited impact in the Atlantic but a substantially greater impact in the Pacific. [85]

Projected impacts

Sun-blocking aerosols around the world steadily declined (red line) since the 1991 eruption of Mount Pinatubo, according to satellite estimates. Credit: Michael Mishchenko, NASA Aerosol dimming.jpg
Sun-blocking aerosols around the world steadily declined (red line) since the 1991 eruption of Mount Pinatubo, according to satellite estimates. Credit: Michael Mishchenko, NASA

Since changes in aerosol concentrations already have an impact on the global climate, they would necessarily influence future projections as well. In fact, it is impossible to fully estimate the warming impact of all greenhouse gases without accounting for the counteracting cooling from aerosols. Climate models started to account for the effects of sulfate aerosols around the IPCC Second Assessment Report; when the IPCC Fourth Assessment Report was published in 2007, every climate model had integrated sulfates, but only 5 were able to account for less impactful particulates like black carbon. [86] By 2021, CMIP6 models estimated total aerosol cooling in the range from 0.1 °C (0.18 °F) to 0.7 °C (1.3 °F); [87] The IPCC Sixth Assessment Report selected the best estimate of a 0.5 °C (0.90 °F) cooling provided by sulfate aerosols, while black carbon amounts to about 0.1 °C (0.18 °F) of warming. [88] While these values are based on combining model estimates with observational constraints, including those on ocean heat content, [89] the matter is not yet fully settled. The difference between model estimates mainly stems from disagreements over the indirect effects of aerosols on clouds. [90] [91] While it is well known that aerosols increase the number of cloud droplets and this makes the clouds more reflective, calculating how liquid water path, an important cloud property, is affected by their presence is far more challenging, as it involves computationally heavy continuous calculations of evaporation and condensation within clouds. Climate models generally assume that aerosols increase liquid water path, which makes the clouds even more reflective. [92]

Regardless of the current strength of aerosol cooling, all future climate change scenarios project decreases in particulates and this includes the scenarios where 1.5 °C (2.7 °F) and 2 °C (3.6 °F) targets are met: their specific emission reduction targets assume the need to make up for lower dimming. [88] Since models estimate that the cooling caused by sulfates is largely equivalent to the warming caused by atmospheric methane (and since methane is a relatively short-lived greenhouse gas), it is believed that simultaneous reductions in both would effectively cancel each other out. [93] Yet, in the recent years, methane concentrations had been increasing at rates exceeding their previous period of peak growth in the 1980s, [94] [95] with wetland methane emissions driving much of the recent growth, [96] [97] while air pollution is getting cleaned up aggressively. [89] These trends are some of the main reasons why 1.5 °C (2.7 °F) warming is now expected around 2030, as opposed to the mid-2010s estimates where it would not occur until 2040. [98]

Solar geoengineering

Proposed tethered balloon to inject aerosols into the stratosphere. SPICE SRM overview.jpg
Proposed tethered balloon to inject aerosols into the stratosphere.
As the real world had shown the importance of sulfate aerosol concentrations to the global climate, research into the subject accelerated. Formation of the aerosols and their effects on the atmosphere can be studied in the lab, with methods like ion-chromatography and mass spectrometry [99] Samples of actual particles can be recovered from the stratosphere using balloons or aircraft, [100] and remote satellites were also used for observation. [101] This data is fed into the climate models, [102] as the necessity of accounting for aerosol cooling to truly understand the rate and evolution of warming had long been apparent, with the IPCC Second Assessment Report being the first to include an estimate of their impact on climate, and every major model able to simulate them by the time IPCC Fourth Assessment Report was published in 2007. [103] Many scientists also see the other side of this research, which is learning how to cause the same effect artificially. [104] While discussed around the 1990s, if not earlier, [105] stratospheric aerosol injection as a solar geoengineering method is best associated with Paul Crutzen's detailed 2006 proposal. [106] Deploying in the stratosphere ensures that the aerosols are at their most effective, and that the progress of clean air measures would not be reversed: more recent research estimated that even under the highest-emission scenario RCP 8.5, the addition of stratospheric sulfur required to avoid 4 °C (7.2 °F) relative to now (and 5 °C (9.0 °F) relative to the preindustrial) would be effectively offset by the future controls on tropospheric sulfate pollution, and the amount required would be even less for less drastic warming scenarios. [107] This spurred a detailed look at its costs and benefits, [108] but even with hundreds of studies into the subject completed by the early 2020s, some notable uncertainties remain. [109]

Properties

Table of thermal and physical properties of saturated liquid sulfur dioxide: [110] [111]

Temperature (°C)Density (kg/m^3)Specific heat (kJ/kg K)Kinematic viscosity (m^2/s)Conductivity (W/m K)Thermal diffusivity (m^2/s)Prandtl NumberBulk modulus (K^-1)
-501560.841.35954.84E-070.2421.14E-074.24-
-401536.811.36074.24E-070.2351.13E-073.74-
-301520.641.36163.71E-070.231.12E-073.31-
-201488.61.36243.24E-070.2251.11E-072.93-
-101463.611.36282.88E-070.2181.10E-072.62-
01438.461.36362.57E-070.2111.08E-072.38-
101412.511.36452.32E-070.2041.07E-072.18-
201386.41.36532.10E-070.1991.05E-0721.94E-03
301359.331.36621.90E-070.1921.04E-071.83-
401329.221.36741.73E-070.1851.02E-071.7-
501299.11.36831.62E-070.1779.99E-081.61-

See also

Related Research Articles

<span class="mw-page-title-main">Attribution of recent climate change</span> Effort to scientifically ascertain mechanisms responsible for recent global warming

Efforts to scientifically ascertain and attribute mechanisms responsible for recent global warming and related climate changes on Earth have found that the main driver is elevated levels of greenhouse gases produced by human activities, with natural forces adding variability. The likely range of human-induced surface-level air warming by 2010–2019 compared to levels in 1850–1900 is 0.8 °C to 1.3 °C, with a best estimate of 1.07 °C. This is close to the observed overall warming during that time of 0.9 °C to 1.2 °C, while temperature changes during that time were likely only ±0.1 °C due to natural forcings and ±0.2 °C due to variability in the climate.

<span class="mw-page-title-main">Carbon dioxide</span> Chemical compound with formula CO₂

Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

<span class="mw-page-title-main">Greenhouse effect</span> Atmospheric phenomenon causing planetary warming

The greenhouse effect occurs when greenhouse gases in a planet's atmosphere cause some of the heat radiated from the planet's surface to build up at the planet's surface. This process happens because stars emit shortwave radiation that passes through greenhouse gases, but planets emit longwave radiation that is partly absorbed by greenhouse gases. That difference reduces the rate at which a planet can cool off in response to being warmed by its host star. Adding to greenhouse gases further reduces the rate a planet emits radiation to space, raising its average surface temperature.

<span class="mw-page-title-main">Global warming potential</span> Potential heat absorbed by a greenhouse gas

Global warming potential (GWP) is a measure of how much infrared thermal radiation a greenhouse gas added to the atmosphere would absorb over a given time frame, as a multiple of the radiation that would be absorbed by the same mass of added carbon dioxide. GWP is 1 for CO2. For other gases it depends on how strongly the gas absorbs infrared thermal radiation, how quickly the gas leaves the atmosphere, and the time frame being considered. The carbon dioxide equivalent is calculated from GWP. For any gas, it is the mass of CO2 that would warm the earth as much as the mass of that gas. Thus it provides a common scale for measuring the climate effects of different gases. It is calculated as GWP times mass of the other gas.

<span class="mw-page-title-main">Sulfate</span> Oxyanion with a central atom of sulfur surrounded by 4 oxygen atoms

The sulfate or sulphate ion is a polyatomic anion with the empirical formula SO2−4. Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many are prepared from that acid.

<span class="mw-page-title-main">Global dimming</span> Reduction in the amount of sunlight reaching Earths surface

The first systematic measurements of global direct irradiance at the Earth's surface began in the 1950s. A decline in irradiance was soon observed, and it was given the name of global dimming. It continued from 1950s until 1980s, with an observed reduction of 4–5% per decade, even though solar activity did not vary more than the usual at the time. Global dimming has instead been attributed to an increase in atmospheric particulate matter, predominantly sulfate aerosols, as the result of rapidly growing air pollution due to post-war industrialization. After 1980s, global dimming started to reverse, alongside reductions in particulate emissions, in what has been described as global brightening, although this reversal is only considered "partial" for now. The reversal has also been globally uneven, as the dimming trend continued during the 1990s over some mostly developing countries like India, Zimbabwe, Chile and Venezuela. Over China, the dimming trend continued at a slower rate after 1990, and did not begin to reverse until around 2005.

<span class="mw-page-title-main">Radiative forcing</span> Difference between solar irradiance absorbed by the Earth and energy radiated back to space

Radiative forcing is the change in energy flux in the atmosphere caused by natural or anthropogenic factors of climate change as measured in watts per meter squared. It is a scientific concept used to quantify and compare the external drivers of change to Earth's energy balance. These external drivers are distinguished from climate feedbacks and internal variability, which also influence the direction and magnitude of imbalance.

<span class="mw-page-title-main">Sulfite</span> Oxyanion with a central atom of sulfur surrounded by 3 oxygen atoms

Sulfites or sulphites are compounds that contain the sulfite ion, SO2−
3
. The sulfite ion is the conjugate base of bisulfite. Although its acid is elusive, its salts are widely used.

<span class="mw-page-title-main">Cloud condensation nuclei</span> Small particles on which water vapor condenses

Cloud condensation nuclei (CCNs), also known as cloud seeds, are small particles typically 0.2 µm, or one hundredth the size of a cloud droplet. CCNs are a unique subset of aerosols in the atmosphere on which water vapour condenses. This can affect the radiative properties of clouds and the overall atmosphere. Water requires a non-gaseous surface to make the transition from a vapour to a liquid; this process is called condensation.

<span class="mw-page-title-main">Climate engineering</span> Deliberate and large-scale intervention in the Earth’s climate system

Climate engineering is a term used for both carbon dioxide removal and solar radiation management, also called solar geoengineering, when applied at a planetary scale. However, they have very different geophysical characteristics which is why the Intergovernmental Panel on Climate Change no longer uses this overarching term. Carbon dioxide removal approaches are part of climate change mitigation. Solar geoengineering involves reflecting some sunlight back to space. All forms of geoengineering are not a standalone solution to climate change, but need to be coupled with other forms of climate change mitigation. Another approach to geoengineering is to increase the Earth's thermal emittance through passive radiative cooling.

<span class="mw-page-title-main">Carbonyl sulfide</span> Chemical compound

Carbonyl sulfide is the chemical compound with the linear formula OCS. It is a colorless flammable gas with an unpleasant odor. It is a linear molecule consisting of a carbonyl double bonded to a sulfur atom. Carbonyl sulfide can be considered to be intermediate between carbon dioxide and carbon disulfide, both of which are valence isoelectronic with it.

<span class="mw-page-title-main">Sulfur cycle</span> Biogeochemical cycle of sulfur

The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes. Steps of the sulfur cycle are:

<span class="mw-page-title-main">Carbon dioxide in Earth's atmosphere</span> Atmospheric constituent; greenhouse gas

In Earth's atmosphere, carbon dioxide is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of several greenhouse gases in the atmosphere of Earth. The current global average concentration of CO2 in the atmosphere is 421 ppm as of May 2022 (0.04%). This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century. The increase is due to human activity. Burning fossil fuels is the main cause of these increased CO2 concentrations and also the main cause of climate change. Other large anthropogenic sources include cement production, deforestation, and biomass burning.

<span class="mw-page-title-main">CLOUD experiment</span> Aerosol nucleation experiment at CERN

Cosmics Leaving Outdoor Droplets (CLOUD) is an experiment being run at CERN by a group of researchers led by Jasper Kirkby to investigate the microphysics between galactic cosmic rays (GCRs) and aerosols under controlled conditions. This is a fixed-target experiment that began operation in November 2009, though it was originally proposed in 2000.

<span class="mw-page-title-main">Solar geoengineering</span> Reflection of sunlight to reduce global warming

Solar geoengineering, or solar radiation modification (SRM), is a type of climate engineering in which sunlight would be reflected back to outer space to limit or offset human-caused climate change. There are multiple potential approaches, with stratospheric aerosol injection (SAI) being the most-studied method, followed by marine cloud brightening (MCB). Other methods have been proposed, including a variety of space-based approaches, but they are generally considered less viable, and are not taken seriously by the Intergovernmental Panel on Climate Change. SRM methods could have a rapid cooling effect on atmospheric temperature, but if the intervention were to suddenly stop for any reason, the cooling would soon stop as well. It is estimated that the cooling impact from SAI would cease 1–3 years after the last aerosol injection, while the impact from marine cloud brightening would disappear in just 10 days. Contrastingly, once any carbon dioxide is added to the atmosphere and not removed, its warming impact does not decrease for a century, and some of it will persist for hundreds to thousands of years. As such, solar geoengineering is not a substitute for reducing greenhouse gas emissions but would act as a temporary measure to limit warming while emissions of greenhouse gases are reduced and carbon dioxide is removed.

<span class="mw-page-title-main">Greenhouse gas</span> Gas in an atmosphere that absorbs and emits radiation at thermal infrared wavelengths

Greenhouse gases are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by water vapor (H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3). Without greenhouse gases, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F).

<span class="mw-page-title-main">Stratospheric aerosol injection</span> Putting particles in the stratosphere to reflect sunlight to limit global heating

Stratospheric aerosol injection is a proposed method of solar geoengineering to reduce global warming. This would introduce aerosols into the stratosphere to create a cooling effect via global dimming and increased albedo, which occurs naturally from volcanic winter. It appears that stratospheric aerosol injection, at a moderate intensity, could counter most changes to temperature and precipitation, take effect rapidly, have low direct implementation costs, and be reversible in its direct climatic effects. The Intergovernmental Panel on Climate Change concludes that it "is the most-researched [solar geoengineering] method, with high agreement that it could limit warming to below 1.5 °C (2.7 °F)." However, like other solar geoengineering approaches, stratospheric aerosol injection would do so imperfectly and other effects are possible, particularly if used in a suboptimal manner.

<span class="mw-page-title-main">Atmospheric methane</span> Methane in Earths atmosphere

Atmospheric methane is the methane present in Earth's atmosphere. The concentration of atmospheric methane is increasing due to methane emissions, and is causing climate change. Methane is one of the most potent greenhouse gases. Methane's radiative forcing (RF) of climate is direct, and it is the second largest contributor to human-caused climate forcing in the historical period. Methane is a major source of water vapour in the stratosphere through oxidation; and water vapour adds about 15% to methane's radiative forcing effect. The global warming potential (GWP) for methane is about 84 in terms of its impact over a 20-year timeframe. That means it traps 84 times more heat per mass unit than carbon dioxide (CO2) and 105 times the effect when accounting for aerosol interactions.

<span class="mw-page-title-main">Particulates</span> Microscopic solid or liquid matter suspended in the Earths atmosphere

Particulates or atmospheric particulate matter are microscopic particles of solid or liquid matter suspended in the air. The term aerosol commonly refers to the particulate/air mixture, as opposed to the particulate matter alone. Sources of particulate matter can be natural or anthropogenic. They have impacts on climate and precipitation that adversely affect human health, in ways additional to direct inhalation.

Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect. As the geological record of past climate changes over millions of years is sparse and poorly resolved, many questions remain unresolved regarding the nature of tectonic-climate interaction, although it is an area of active research by geologists and palaeoclimatologists.

References

  1. Sulfur dioxide Archived 2019-12-30 at the Wayback Machine , U.S. National Library of Medicine
  2. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN   0-8493-0487-3.
  3. "Hazardous Substances Data Bank".
  4. Miller, J.W. Jr.; Shah, P.N.; Yaws, C.L. (1976). "Correlation constants for chemical compounds". Chemical Engineering. 83 (25): 153–180. ISSN   0009-2460.
  5. "C&L Inventory".
  6. 1 2 "Sulfur dioxide". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  7. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0575". National Institute for Occupational Safety and Health (NIOSH).
  8. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  9. Cunningham, Terence P.; Cooper, David L.; Gerratt, Joseph; Karadakov, Peter B. & Raimondi, Mario (1997). "Chemical bonding in oxofluorides of hypercoordinatesulfur". Journal of the Chemical Society, Faraday Transactions. 93 (13): 2247–2254. doi:10.1039/A700708F.
  10. US EPA, OAR (2016-05-04). "Sulfur Dioxide Trends". www.epa.gov. Retrieved 2023-02-16.
  11. Marcq, Emmanuel; Bertaux, Jean-Loup; Montmessin, Franck; Belyaev, Denis (2012). "Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere". Nature Geoscience. 6 (1): 25–28. Bibcode:2013NatGe...6...25M. doi:10.1038/ngeo1650. ISSN   1752-0894. S2CID   59323909.
  12. Halevy, I.; Zuber, M. T.; Schrag, D. P. (2007). "A Sulfur Dioxide Climate Feedback on Early Mars". Science. 318 (5858): 1903–1907. Bibcode:2007Sci...318.1903H. doi:10.1126/science.1147039. ISSN   0036-8075. PMID   18096802. S2CID   7246517.
  13. Lellouch, E.; et al. (2007). "Io's atmosphere". In Lopes, R. M. C.; Spencer, J. R. (eds.). Io after Galileo. Springer-Praxis. pp. 231–264. ISBN   978-3-540-34681-4.
  14. "James Webb Space Telescope reveals an exoplanet atmosphere as never seen before".
  15. Cruikshank, D. P.; Howell, R. R.; Geballe, T. R.; Fanale, F. P. (1985). "Sulfur Dioxide Ice on IO". ICES in the Solar System. pp. 805–815. doi:10.1007/978-94-009-5418-2_55. ISBN   978-94-010-8891-6.
  16. Europa's Hidden Ice Chemistry – NASA Jet Propulsion Laboratory. Jpl.nasa.gov (2010-10-04). Retrieved on 2013-09-24.
  17. 1 2 3 Müller, Hermann. "Sulfur Dioxide". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a25_569.
  18. Shriver, Atkins. Inorganic Chemistry, Fifth Edition. W. H. Freeman and Company; New York, 2010; p. 414.
  19. WHITEHAVEN COAST ARCHAEOLOGICAL SURVEY. lakestay.co.uk (2007)
  20. "Information archivée dans le Web" (PDF).
  21. Zamboni, Cibele B.; Medeiros, Ilca M. M. A.; de Medeiros, José A. G. (October 2011). Analysis of Sulfur in Dried Fruits Using NAA (PDF). 2011 International Nuclear Atlantic Conference - INAC 2011. ISBN   978-85-99141-03-8. Archived from the original (PDF) on 2020-06-04. Retrieved 2020-06-04.
  22. Current EU approved additives and their E Numbers, The Food Standards Agency website.
  23. 1 2 Preserving foods: Drying fruits and Vegetable (PDF), University of Georgia cooperative extension service
  24. "Practical Winery & vineyard Journal Jan/Feb 2009". www.practicalwinery.com. 1 Feb 2009. Archived from the original on 2013-09-28.
  25. Sulphites in wine, MoreThanOrganic.com.
  26. Jackson, R.S. (2008) Wine science: principles and applications, Amsterdam; Boston: Elsevier/Academic Press
  27. Guerrero, Raúl F; Cantos-Villar, Emma (2015). "Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review". Trends in Food Science & Technology. 42: 27–43. doi:10.1016/j.tifs.2014.11.004.
  28. Chlorine Use in the Winery. Purdue University
  29. Use of ozone for winery and environmental sanitation Archived 2017-09-12 at the Wayback Machine , Practical Winery & Vineyard Journal.
  30. Tchobanoglous, George (1979). Wastewater Engineering (3rd ed.). New York: McGraw Hill. ISBN   0-07-041677-X.
  31. Engelmann, Lukas (July 2018). "Fumigating the Hygienic Model City: Bubonic Plague and the Sulfurozador in Early-Twentieth-Century Buenos Aires". Medical History. 62 (3): 360–382. doi:10.1017/mdh.2018.37. PMC   6113751 . PMID   29886876.
  32. Liu, D.; Jin, H.; Tang, C.; Du, J. (2010). "Sulfur Dioxide: a Novel Gaseous Signal in the Regulation of Cardiovascular Functions". Mini-Reviews in Medicinal Chemistry. 10 (11): 1039–1045. doi:10.2174/1389557511009011039. PMID   20540708.
  33. Tian, Hong (5 November 2014). "Advances in the study on endogenous sulfur dioxide in the cardiovascular system". Chinese Medical Journal. 127 (21): 3803–3807. doi:10.3760/cma.j.issn.0366-6999.20133031 (inactive 1 August 2023). PMID   25382339.{{cite journal}}: CS1 maint: DOI inactive as of August 2023 (link)
  34. Yang R, Yang Y, Dong X, Wu X, Wei Y (Aug 2014). "Correlation between endogenous sulfur dioxide and homocysteine in children with pulmonary arterial hypertension associated with congenital heart disease". Zhonghua Er Ke Za Zhi (in Chinese). 52 (8): 625–629. PMID   25224243.
  35. Liu D, Huang Y, Bu D, Liu AD, Holmberg L, Jia Y, Tang C, Du J, Jin H (May 2014). "Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling". Cell Death Dis. 5 (5): e1251. doi:10.1038/cddis.2014.229. PMC   4047873 . PMID   24853429.
  36. Wang XB, Jin HF, Tang CS, Du JB (16 Nov 2011). "The biological effect of endogenous sulfur dioxide in the cardiovascular system". Eur J Pharmacol. 670 (1): 1–6. doi:10.1016/j.ejphar.2011.08.031. PMID   21925165.
  37. Liang Y, Liu D, Ochs T, Tang C, Chen S, Zhang S, Geng B, Jin H, Du J (Jan 2011). "Endogenous sulfur dioxide protects against isoproterenol-induced myocardial injury and increases myocardial antioxidant capacity in rats". Lab. Invest. 91 (1): 12–23. doi: 10.1038/labinvest.2010.156 . PMID   20733562.
  38. Hoffman, R. V. (1990). "m-Trifluoromethylbenzenesulfonyl Chloride". Organic Syntheses .; Collective Volume, vol. 7, p. 508
  39. Olah, George A.; Lukas, Joachim. (1967-08-01). "Stable carbonium ions. XLVII. Alkylcarbonium ion formation from alkanes via hydride (alkide) ion abstraction in fluorosulfonic acid-antimony pentafluoride-sulfuryl chlorofluoride solution". Journal of the American Chemical Society. 89 (18): 4739–4744. doi:10.1021/ja00994a030. ISSN   0002-7863.
  40. "Center for Science in the Public Interest – Chemical Cuisine" . Retrieved March 17, 2010.
  41. "California Department of Public Health: Food and Drug Branch: Sulfites" (PDF). Archived from the original (PDF) on July 23, 2012. Retrieved September 27, 2013.
  42. Vally H, Misso NL (2012). "Adverse reactions to the sulphite additives". Gastroenterol Hepatol Bed Bench. 5 (1): 16–23. PMC   4017440 . PMID   24834193.
  43. Sulfur Dioxide Basics U.S. Environmental Protection Agency
  44. 1 2 Sulfur Dioxide (SO2) Pollution. United States Environmental Protection Agency
  45. "NIOSH Pocket Guide to Chemical Hazards".
  46. "Volcanic Sulfur Aerosols Affect Climate and the Earth's Ozone Layer". United States Geological Survey. Retrieved 17 February 2009.
  47. Mathera, T.A., C. Oppenheimer, A.G. Allen and A.J.S. McGonigle (2004). "Aerosol chemistry of emissions from three contrasting volcanoes in Italy". Atmospheric Environment. 38 (33): 5637–5649. Bibcode:2004AtmEn..38.5637M. doi:10.1016/j.atmosenv.2004.06.017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. IPCC, 1990: Chapter 1: Greenhouse Gases and Aerosols [R.T. Watson, H. Rodhe, H. Oeschger and U. Siegenthaler]. In: Climate Change: The IPCC Scientific Assessment [J.T.Houghton, G.J.Jenkins and J.J.Ephraums (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 31–34,
  49. 1 2 Effects of Acid Rain – Human Health Archived January 18, 2008, at the Wayback Machine . Epa.gov (June 2, 2006). Retrieved on 2013-02-09.
  50. Bates, T. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E. (April 1992). "Sulfur emissions to the atmosphere from natural sources". Journal of Atmospheric Chemistry. 14 (1–4): 315–337. Bibcode:1992JAtC...14..315B. doi:10.1007/BF00115242. ISSN   0167-7764. S2CID   55497518.
  51. Burns, Douglas A.; Aherne, Julian; Gay, David A.; Lehmann, Christopher M.~B. (2016). "Acid rain and its environmental effects: Recent scientific advances". Atmospheric Environment. 146: 1–4. Bibcode:2016AtmEn.146....1B. doi:10.1016/j.atmosenv.2016.10.019.
  52. "Effects of Acid Rain - Surface Waters and Aquatic Animals". US EPA. Archived from the original on 14 May 2009.
  53. Rodhe, Henning; Dentener, Frank; Schulz, Michael (2002-10-01). "The Global Distribution of Acidifying Wet Deposition". Environmental Science & Technology. 36 (20): 4382–4388. Bibcode:2002EnST...36.4382R. doi:10.1021/es020057g. ISSN   0013-936X. PMID   12387412.
  54. US EPA: Effects of Acid Rain – Forests Archived July 26, 2008, at the Wayback Machine
  55. Likens, G. E.; Driscoll, C. T.; Buso, D. C. (1996). "Long-Term Effects of Acid Rain: Response and Recovery of a Forest Ecosystem" (PDF). Science. 272 (5259): 244. Bibcode:1996Sci...272..244L. doi:10.1126/science.272.5259.244. S2CID   178546205. Archived (PDF) from the original on December 24, 2012. Retrieved February 9, 2013.
  56. Larssen, T.; Carmichael, G. R. (2000-10-01). "Acid rain and acidification in China: the importance of base cation deposition". Environmental Pollution. 110 (1): 89–102. doi:10.1016/S0269-7491(99)00279-1. ISSN   0269-7491. PMID   15092859. Archived from the original on March 30, 2015. Retrieved April 22, 2020.
  57. Johnson, Dale W.; Turner, John; Kelly, J. M. (1982). "The effects of acid rain on forest nutrient status". Water Resources Research. 18 (3): 449–461. Bibcode:1982WRR....18..449J. doi:10.1029/WR018i003p00449. ISSN   1944-7973.
  58. Wang, X.; Ding, H.; Ryan, L.; Xu, X. (1 May 1997). "Association between air pollution and low birth weight: a community-based study". Environmental Health Perspectives. 105 (5): 514–20. doi:10.1289/ehp.97105514. ISSN   0091-6765. PMC   1469882 . PMID   9222137. S2CID   2707126.
  59. Xu, Yangyang; Ramanathan, Veerabhadran; Victor, David G. (5 December 2018). "Global warming will happen faster than we think". Nature. 564 (7734): 30–32. Bibcode:2018Natur.564...30X. doi: 10.1038/d41586-018-07586-5 . PMID   30518902.
  60. Lin, Cheng-Kuan; Lin, Ro-Ting; Chen, Pi-Cheng; Wang, Pu; De Marcellis-Warin, Nathalie; Zigler, Corwin; Christiani, David C. (2018-02-08). "A Global Perspective on Sulfur Oxide Controls in Coal-Fired Power Plants and Cardiovascular Disease". Scientific Reports. 8 (1): 2611. Bibcode:2018NatSR...8.2611L. doi:10.1038/s41598-018-20404-2. ISSN   2045-2322. PMC   5805744 . PMID   29422539.
  61. Lindeburg, Michael R. (2006). Mechanical Engineering Reference Manual for the PE Exam. Belmont, C.A.: Professional Publications, Inc. pp. 27–3. ISBN   978-1-59126-049-3.
  62. FAQ's About Sulfur Removal and Recovery using the LO-CAT® Hydrogen Sulfide Removal System. gtp-merichem.com
  63. Process screening analysis of alternative gas treating and sulfur removal for gasification. (December 2002) Report by SFA Pacific, Inc. prepared for U.S. Department of Energy (PDF) Retrieved on 2011-10-31.
  64. May, Walter R. Marine Emissions Abatement Archived 2015-04-02 at the Wayback Machine . SFA International, Inc., p. 6.
  65. "Earth lightens up". Pacific Northwest National Laboratory. Retrieved 8 May 2005.
  66. Ohmura, A.; Lang, H. (June 1989). Lenoble, J.; Geleyn, J.-F. (eds.). Secular variation of global radiation in Europe. In IRS '88: Current Problems in Atmospheric Radiation, A. Deepak Publ., Hampton, VA. Hampton, VA: Deepak Publ. pp. (635) pp. 298–301. ISBN   978-0-937194-16-4.
  67. Russak, V. (1990). "Trends of solar radiation, cloudiness and atmospheric transparency during recent decades in Estonia". Tellus B. 42 (2): 206–210. Bibcode:1990TellB..42..206R. doi:10.1034/j.1600-0889.1990.t01-1-00006.x. 1990TellB..42..206R.
  68. Liepert, B. G.; Fabian, P.; et al. (1994). "Solar radiation in Germany – Observed trends and an assessment of their causes. Part 1. Regional approach". Contributions to Atmospheric Physics . 67: 15–29.
  69. Abakumova, G.M.; et al. (1996). "Evaluation of long-term changes in radiation, cloudiness and surface temperature on the territory of the former Soviet Union" (PDF). Journal of Climate . 9 (6): 1319–1327. Bibcode:1996JCli....9.1319A. doi:10.1175/1520-0442(1996)009<1319:EOLTCI>2.0.CO;2.
  70. 1 2 Stanhill, G.; Moreshet, S. (6 November 2004). "Global radiation climate changes in Israel". Climatic Change . 22 (2): 121–138. Bibcode:1992ClCh...22..121S. doi:10.1007/BF00142962. S2CID   154006620.
  71. H. Gilgen; M. Wild; A. Ohmura (1998). "Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data" (PDF). Journal of Climate . 11 (8): 2042–2061. Bibcode:1998JCli...11.2042G. doi: 10.1175/1520-0442-11.8.2042 .
  72. Stanhill, G.; S. Cohen (2001). "Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences". Agricultural and Forest Meteorology . 107 (4): 255–278. Bibcode:2001AgFM..107..255S. doi:10.1016/S0168-1923(00)00241-0.
  73. Liepert, B. G. (2 May 2002). "Observed Reductions in Surface Solar Radiation in the United States and Worldwide from 1961 to 1990" (PDF). Geophysical Research Letters . 29 (12): 61–1–61–4. Bibcode:2002GeoRL..29.1421L. doi: 10.1029/2002GL014910 .
  74. Eddy, John A.; Gilliland, Ronald L.; Hoyt, Douglas V. (23 December 1982). "Changes in the solar constant and climatic effects". Nature . 300 (5894): 689–693. Bibcode:1982Natur.300..689E. doi:10.1038/300689a0. S2CID   4320853. Spacecraft measurements have established that the total radiative output of the Sun varies at the 0.1−0.3% level
  75. Adam, David (18 December 2003). "Goodbye sunshine". The Guardian. Retrieved 26 August 2009.
  76. Cohen, Shabtai; Stanhill, Gerald (1 January 2021), Letcher, Trevor M. (ed.), "Chapter 32 – Changes in the Sun's radiation: the role of widespread surface solar radiation trends in climate change: dimming and brightening", Climate Change (Third Edition), Elsevier, pp. 687–709, doi:10.1016/b978-0-12-821575-3.00032-3, ISBN   978-0-12-821575-3, S2CID   234180702 , retrieved 2023-04-26
  77. "Global 'Sunscreen' Has Likely Thinned, Report NASA Scientists". NASA. 15 March 2007.
  78. IPCC, 1990: Chapter 1: Greenhouse Gases and Aerosols [R.T. Watson, H. Rodhe, H. Oeschger and U. Siegenthaler]. In: Climate Change: The IPCC Scientific Assessment [J.T.Houghton, G.J.Jenkins and J.J.Ephraums (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 31–34,
  79. Xie, Xiaoning; Myhre, Gunnar; Shindell, Drew; Faluvegi, Gregory; Takemura, Toshihiko; Voulgarakis, Apostolos; Shi, Zhengguo; Li, Xinzhou; Xie, Xiaoxun; Liu, Heng; Liu, Xiaodong; Liu, Yangang (27 December 2022). "Anthropogenic sulfate aerosol pollution in South and East Asia induces increased summer precipitation over arid Central Asia". Communications Earth & Environment. 3 (1): 328. doi:10.1038/s43247-022-00660-x. PMC   9792934 . PMID   36588543.
  80. Pan, Bowen; Wang, Yuan; Hu, Jiaxi; Lin, Yun; Hsieh, Jen-Shan; Logan, Timothy; Feng, Xidan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi (2018). "Sahara dust may make you cough, but it's a storm killer". Journal of Climate. 31 (18): 7621–7644. doi: 10.1175/JCLI-D-16-0776.1 .
  81. Cat Lazaroff (7 December 2001). "Aerosol Pollution Could Drain Earth's Water Cycle". Environment News Service. Archived from the original on 2016-06-03. Retrieved 2007-03-24.
  82. Kostel, Ken; Oh, Clare (14 April 2006). "Could Reducing Global Dimming Mean a Hotter, Dryer World?". Lamont–Doherty Earth Observatory News. Archived from the original on 2016-03-03. Retrieved 2006-06-12.
  83. Chang, C.-Y.; Chiang, J. C. H.; Wehner, M. F.; Friedman, A. R.; Ruedy, R. (15 May 2011). "Sulfate Aerosol Control of Tropical Atlantic Climate over the Twentieth Century". Journal of Climate. 24 (10): 2540–2555. doi: 10.1175/2010JCLI4065.1 .
  84. Peace, Amy H.; Booth, Ben B. B.; Regayre, Leighton A.; Carslaw, Ken S.; Sexton, David M. H.; Bonfils, Céline J. W.; Rostron, John W. (26 August 2022). "Evaluating uncertainty in aerosol forcing of tropical precipitation shifts". Earth System Dynamics. 13 (3): 1215–1232. doi: 10.5194/esd-13-1215-2022 .
  85. Allen, Robert J. (20 August 2015). "A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions". Journal of Geophysical Research: Atmospheres. 120 (18): 9087–9102. doi: 10.1002/2015JD023623 .
  86. "Aerosols and Incoming Sunlight (Direct Effects)". NASA. 2 November 2010.
  87. Gillett, Nathan P.; Kirchmeier-Young, Megan; Ribes, Aurélien; Shiogama, Hideo; Hegerl, Gabriele C.; Knutti, Reto; Gastineau, Guillaume; John, Jasmin G.; Li, Lijuan; Nazarenko, Larissa; Rosenbloom, Nan; Seland, Øyvind; Wu, Tongwen; Yukimoto, Seiji; Ziehn, Tilo (18 January 2021). "Constraining human contributions to observed warming since the pre-industrial period" (PDF). Nature Climate Change. 11 (3): 207–212. doi:10.1038/s41558-020-00965-9. S2CID   231670652.
  88. 1 2 IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–32, doi:10.1017/9781009157896.001.
  89. 1 2 Quaas, Johannes; Jia, Hailing; Smith, Chris; Albright, Anna Lea; Aas, Wenche; Bellouin, Nicolas; Boucher, Olivier; Doutriaux-Boucher, Marie; Forster, Piers M.; Grosvenor, Daniel; Jenkins, Stuart; Klimont, Zbigniew; Loeb, Norman G.; Ma, Xiaoyan; Naik, Vaishali; Paulot, Fabien; Stier, Philip; Wild, Martin; Myhre, Gunnar; Schulz, Michael (21 September 2022). "Robust evidence for reversal of the trend in aerosol effective climate forcing". Atmospheric Chemistry and Physics. 22 (18): 12221–12239. doi:10.5194/acp-22-12221-2022. hdl: 20.500.11850/572791 . S2CID   252446168.
  90. Andrew, Tawana (27 September 2019). "Behind the Forecast: How clouds affect temperatures". Science Behind the Forecast. LOUISVILLE, Ky. (WAVE). Retrieved 4 January 2023.
  91. Zhang, Jie; Furtado, Kalli; Turnock, Steven T.; Mulcahy, Jane P.; Wilcox, Laura J.; Booth, Ben B.; Sexton, David; Wu, Tongwen; Zhang, Fang; Liu, Qianxia (22 December 2021). "The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models". Atmospheric Chemistry and Physics. 21 (4): 18609–18627. doi:10.5194/acp-21-18609-2021.
  92. McCoy, Daniel T.; Field, Paul; Gordon, Hamish; Elsaesser, Gregory S.; Grosvenor, Daniel P. (6 April 2020). "Untangling causality in midlatitude aerosol–cloud adjustments". Atmospheric Chemistry and Physics. 20 (7): 4085–4103. doi: 10.5194/acp-20-4085-2020 .
  93. Zeke Hausfather (29 April 2021). "Explainer: Will global warming 'stop' as soon as net-zero emissions are reached?". Carbon Brief . Retrieved 2023-03-23.
  94. "Trends in Atmospheric Methane". NOAA . Retrieved 14 October 2022.
  95. Tollefson J (8 February 2022). "Scientists raise alarm over 'dangerously fast' growth in atmospheric methane". Nature . Retrieved 14 October 2022.
  96. Lan X, Basu S, Schwietzke S, Bruhwiler LM, Dlugokencky EJ, Michel SE, Sherwood OA, Tans PP, Thoning K, Etiope G, Zhuang Q, Liu L, Oh Y, Miller JB, Pétron G, Vaughn BH, Crippa M (8 May 2021). "Improved Constraints on Global Methane Emissions and Sinks Using δ13C-CH4". Global Biogeochemical Cycles. 35 (6): e2021GB007000. Bibcode:2021GBioC..3507000L. doi: 10.1029/2021GB007000 . PMC   8244052 . PMID   34219915.
  97. Feng, Liang; Palmer, Paul I.; Zhu, Sihong; Parker, Robert J.; Liu, Yi (16 March 2022). "Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate". Nature Communications . 13 (1): 1378. Bibcode:2022NatCo..13.1378F. doi:10.1038/s41467-022-28989-z. PMC   8927109 . PMID   35297408.
  98. Xu, Yangyang; Ramanathan, Veerabhadran; Victor, David G. (5 December 2018). "Global warming will happen faster than we think". Nature. 564 (7734): 30–32. Bibcode:2018Natur.564...30X. doi: 10.1038/d41586-018-07586-5 . PMID   30518902.
  99. Kobayashi, Yuya; Ide, Yu; Takegawa, Nobuyuki (2021-04-03). "Development of a novel particle mass spectrometer for online measurements of refractory sulfate aerosols". Aerosol Science and Technology. 55 (4): 371–386. Bibcode:2021AerST..55..371K. doi:10.1080/02786826.2020.1852168. ISSN   0278-6826. S2CID   229506768.
  100. Palumbo, P., A. Rotundi, V. Della Corte, A. Ciucci, L. Colangeli, F. Esposito, E. Mazzotta Epifani, V. Mennella , J.R. Brucato, F.J.M. Rietmeijer, G. J. Flynn, J.-B. Renard, J.R. Stephens, and E. Zona. "The DUSTER experiment: collection and analysis of aerosol in the high stratosphere" . Retrieved 19 February 2009.{{cite web}}: CS1 maint: multiple names: authors list (link)[ permanent dead link ]
  101. Myhre, Gunnar; Stordal, Frode; Berglen, Tore F.; Sundet, Jostein K.; Isaksen, Ivar S. A. (2004-03-01). "Uncertainties in the Radiative Forcing Due to Sulfate Aerosols". Journal of the Atmospheric Sciences. 61 (5): 485–498. Bibcode:2004JAtS...61..485M. doi: 10.1175/1520-0469(2004)061<0485:UITRFD>2.0.CO;2 . ISSN   0022-4928. S2CID   55623817.
  102. Zhang, Jie; Furtado, Kalli; Turnock, Steven T.; Mulcahy, Jane P.; Wilcox, Laura J.; Booth, Ben B.; Sexton, David; Wu, Tongwen; Zhang, Fang; Liu, Qianxia (22 December 2021). "The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models". Atmospheric Chemistry and Physics. 21 (4): 18609–18627. Bibcode:2021ACP....2118609Z. doi: 10.5194/acp-21-18609-2021 .
  103. "Aerosols and Incoming Sunlight (Direct Effects)". NASA. 2 November 2010.
  104. "Stratospheric Injections Could Help Cool Earth, Computer Model Shows". ScienceDaily. 15 September 2006. Retrieved 19 February 2009.
  105. Launder B. & J.M.T. Thompson (1996). "Global and Arctic climate engineering: numerical model studies". Phil. Trans. R. Soc. A. 366 (1882): 4039–56. Bibcode:2008RSPTA.366.4039C. doi: 10.1098/rsta.2008.0132 . PMID   18757275.
  106. Crutzen, P. J. (2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change. 77 (3–4): 211–220. Bibcode:2006ClCh...77..211C. doi: 10.1007/s10584-006-9101-y .
  107. Visioni, Daniele; Slessarev, Eric; MacMartin, Douglas G; Mahowald, Natalie M; Goodale, Christine L; Xia, Lili (1 September 2020). "What goes up must come down: impacts of deposition in a sulfate geoengineering scenario". Environmental Research Letters. 15 (9): 094063. Bibcode:2020ERL....15i4063V. doi: 10.1088/1748-9326/ab94eb . ISSN   1748-9326.
  108. Andrew Charlton-Perez & Eleanor Highwood. "Costs and benefits of geo-engineering in the Stratosphere" (PDF). Archived from the original (PDF) on 14 January 2017. Retrieved 17 February 2009.
  109. Trisos, Christopher H.; Geden, Oliver; Seneviratne, Sonia I.; Sugiyama, Masahiro; van Aalst, Maarten; Bala, Govindasamy; Mach, Katharine J.; Ginzburg, Veronika; de Coninck, Heleen; Patt, Anthony (2021). "Cross-Working Group Box SRM: Solar Radiation Modification" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021: 1238. Bibcode:2021AGUFM.U13B..05K. doi:10.1017/9781009157896.007.
  110. Holman, Jack P. (2002). Heat Transfer (9th ed.). New York, NY: McGraw-Hill Companies, Inc. pp. 600–606. ISBN   9780072406559.
  111. Incropera 1 Dewitt 2 Bergman 3 Lavigne 4, rank P. 1 David P. 2 Theodore L. 3 Adrienne S. 4 (2007). Fundamentals of Heat and Mass Transfer (6th ed.). Hoboken, NJ: John Wiley and Sons, Inc. pp. 941–950. ISBN   9780471457282.