Bond order

Last updated

In chemistry, bond order is a formal measure of the multiplicity of a covalent bond between two atoms. As introduced by Gerhard Herzberg, [1] building off of work by R. S. Mulliken and Friedrich Hund, bond order is defined as the difference between the numbers of electron pairs in bonding and antibonding molecular orbitals.

Contents

Bond order gives a rough indication of the stability of a bond. Isoelectronic species have the same bond order. [2]

Examples

The bond order itself is the number of electron pairs (covalent bonds) between two atoms. [3] For example, in diatomic nitrogen N≡N, the bond order between the two nitrogen atoms is 3 (triple bond). In acetylene H–C≡C–H, the bond order between the two carbon atoms is also 3, and the C–H bond order is 1 (single bond). In carbon monoxide, C≡O+, the bond order between carbon and oxygen is 3. In thiazyl trifluoride N≡SF3, the bond order between sulfur and nitrogen is 3, and between sulfur and fluorine is 1. In diatomic oxygen O=O the bond order is 2 (double bond). In ethylene H2C=CH2 the bond order between the two carbon atoms is also 2. The bond order between carbon and oxygen in carbon dioxide O=C=O is also 2. In phosgene O=CCl2, the bond order between carbon and oxygen is 2, and between carbon and chlorine is 1.

In some molecules, bond orders can be 4 (quadruple bond), 5 (quintuple bond) or even 6 (sextuple bond). For example, potassium octachlorodimolybdate salt (K4[Mo2Cl8]) contains the [Cl4Mo≣MoCl4]4− anion, in which the two Mo atoms are linked to each other by a bond with order of 4. Each Mo atom is linked to four Cl ligands by a bond with order of 1. The compound (terphenyl)–CrCr–(terphenyl) contains two chromium atoms linked to each other by a bond with order of 5, and each chromium atom is linked to one terphenyl ligand by a single bond. A bond of order 6 is detected in ditungsten molecules W2, which exist only in a gaseous phase.

Non-integer bond orders

In molecules which have resonance or nonclassical bonding, bond order may not be an integer. In benzene, the delocalized molecular orbitals contain 6 pi electrons over six carbons, essentially yielding half a pi bond together with the sigma bond for each pair of carbon atoms, giving a calculated bond order of 1.5 (one and a half bond). Furthermore, bond orders of 1.1 (eleven tenths bond), 4/3 (or 1.333333..., four thirds bond) or 0.5 (half bond), for example, can occur in some molecules and essentially refer to bond strength relative to bonds with order 1. In the nitrate anion (NO3), the bond order for each bond between nitrogen and oxygen is 4/3 (or 1.333333...). Bonding in dihydrogen cation H+2 can be described as a covalent one-electron bond, thus the bonding between the two hydrogen atoms has bond order of 0.5. [4]

Bond order in molecular orbital theory

In molecular orbital theory, bond order is defined as half the difference between the number of bonding electrons and the number of antibonding electrons as per the equation below. [5] [6] This often but not always yields similar results for bonds near their equilibrium lengths, but it does not work for stretched bonds. [7] Bond order is also an index of bond strength and is also used extensively in valence bond theory.

bond order = number of bonding electrons - number of antibonding electrons/2

Generally, the higher the bond order, the stronger the bond. Bond orders of one-half may be stable, as shown by the stability of H+2 (bond length 106 pm, bond energy 269 kJ/mol) and He+2 (bond length 108 pm, bond energy 251 kJ/mol). [8]

Hückel molecular orbital theory offers another approach for defining bond orders based on molecular orbital coefficients, for planar molecules with delocalized π bonding. The theory divides bonding into a sigma framework and a pi system. The π-bond order between atoms r and s derived from Hückel theory was defined by Charles Coulson by using the orbital coefficients of the Hückel MOs: [9] [10] [ clarification needed ]

,

Here the sum extends over π molecular orbitals only, and ni is the number of electrons occupying orbital i with coefficients cri and csi on atoms r and s respectively. Assuming a bond order contribution of 1 from the sigma component this gives a total bond order (σ + π) of 5/3 = 1.67 for benzene, rather than the commonly cited bond order of 1.5, showing some degree of ambiguity in how the concept of bond order is defined.

For more elaborate forms of molecular orbital theory involving larger basis sets, still other definitions have been proposed. [11] A standard quantum mechanical definition for bond order has been debated for a long time. [12] A comprehensive method to compute bond orders from quantum chemistry calculations was published in 2017. [7]

Other definitions

The bond order concept is used in molecular dynamics and bond order potentials. The magnitude of the bond order is associated with the bond length. According to Linus Pauling in 1947, the bond order between atoms i and j is experimentally described as

where d1 is the single bond length, dij is the bond length experimentally measured, and b is a constant, depending on the atoms. Pauling suggested a value of 0.353 Å for b, for carbon-carbon bonds in the original equation: [13]

The value of the constant b depends on the atoms. This definition of bond order is somewhat ad hoc and only easy to apply for diatomic molecules.

Related Research Articles

<span class="mw-page-title-main">Covalent bond</span> Chemical bond by sharing of electron pairs

A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding. For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full valence shell, corresponding to a stable electronic configuration. In organic chemistry, covalent bonding is much more common than ionic bonding.

<span class="mw-page-title-main">Molecular orbital</span> Wave-like behavior of an electron in a molecule

In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region. The terms atomic orbital and molecular orbital were introduced by Robert S. Mulliken in 1932 to mean one-electron orbital wave functions. At an elementary level, they are used to describe the region of space in which a function has a significant amplitude.

<span class="mw-page-title-main">Conjugated system</span> System of connected p-orbitals with delocalized electrons in a molecule

In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.

<span class="mw-page-title-main">Aromaticity</span> Chemical property

In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855. There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds.

<span class="mw-page-title-main">Octet rule</span> Chemical rule of thumb

The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the rule is applicable for the s-block and p-block of the periodic table. Other rules exist for other elements, such as the duplet rule for hydrogen and helium, and the 18-electron rule for transition metals.

In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures into a resonance hybrid in valence bond theory. It has particular value for analyzing delocalized electrons where the bonding cannot be expressed by one single Lewis structure. The resonance hybrid is the accurate structure for a molecule or ion; it is an average of the theoretical contributing structures.

<span class="mw-page-title-main">Lone pair</span> Pair of valence electrons which are not shared with another atom in a covalent bond

In chemistry, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bond and is sometimes called an unshared pair or non-bonding pair. Lone pairs are found in the outermost electron shell of atoms. They can be identified by using a Lewis structure. Electron pairs are therefore considered lone pairs if two electrons are paired but are not used in chemical bonding. Thus, the number of electrons in lone pairs plus the number of electrons in bonds equals the number of valence electrons around an atom.

<span class="mw-page-title-main">Pi bond</span> Type of chemical bond

In chemistry, pi bonds are covalent chemical bonds, in each of which two lobes of an orbital on one atom overlap with two lobes of an orbital on another atom, and in which this overlap occurs laterally. Each of these atomic orbitals has an electron density of zero at a shared nodal plane that passes through the two bonded nuclei. This plane also is a nodal plane for the molecular orbital of the pi bond. Pi bonds can form in double and triple bonds but do not form in single bonds in most cases.

In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. The MOT explains the paramagnetic nature of O2, which valence bond theory cannot explain.

<span class="mw-page-title-main">Hückel's rule</span> Method of determining aromaticity in organic molecules

In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π-electrons, where n is a non-negative integer. The quantum mechanical basis for its formulation was first worked out by physical chemist Erich Hückel in 1931. The succinct expression as the 4n + 2 rule has been attributed to W. v. E. Doering (1951), although several authors were using this form at around the same time.

In chemistry, orbital hybridisation is the concept of mixing atomic orbitals to form new hybrid orbitals suitable for the pairing of electrons to form chemical bonds in valence bond theory. For example, in a carbon atom which forms four single bonds, the valence-shell s orbital combines with three valence-shell p orbitals to form four equivalent sp3 mixtures in a tetrahedral arrangement around the carbon to bond to four different atoms. Hybrid orbitals are useful in the explanation of molecular geometry and atomic bonding properties and are symmetrically disposed in space. Usually hybrid orbitals are formed by mixing atomic orbitals of comparable energies.

<span class="mw-page-title-main">Bent bond</span> Type of covalent bond in organic chemistry

In organic chemistry, a bent bond, also known as a banana bond, is a type of covalent chemical bond with a geometry somewhat reminiscent of a banana. The term itself is a general representation of electron density or configuration resembling a similar "bent" structure within small ring molecules, such as cyclopropane (C3H6) or as a representation of double or triple bonds within a compound that is an alternative to the sigma and pi bond model.

<span class="mw-page-title-main">Triplet oxygen</span> Triplet state of the dioxygen molecule

Triplet oxygen, 3O2, refers to the S = 1 electronic ground state of molecular oxygen (dioxygen). Molecules of triplet oxygen contain two unpaired electrons, making triplet oxygen an unusual example of a stable and commonly encountered diradical: it is more stable as a triplet than a singlet. According to molecular orbital theory, the electron configuration of triplet oxygen has two electrons occupying two π molecular orbitals (MOs) of equal energy (that is, degenerate MOs). In accordance with Hund's rules, they remain unpaired and spin-parallel, which accounts for the paramagnetism of molecular oxygen. These half-filled orbitals are antibonding in character, reducing the overall bond order of the molecule to 2 from the maximum value of 3 that would occur when these antibonding orbitals remain fully unoccupied, as in dinitrogen. The molecular term symbol for triplet oxygen is 3Σ
g
.

The Hückel method or Hückel molecular orbital theory, proposed by Erich Hückel in 1930, is a simple method for calculating molecular orbitals as linear combinations of atomic orbitals. The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules, such as ethylene, benzene, butadiene, and pyridine. It provides the theoretical basis for Hückel's rule that cyclic, planar molecules or ions with π-electrons are aromatic. It was later extended to conjugated molecules such as pyridine, pyrrole and furan that contain atoms other than carbon and hydrogen (heteroatoms). A more dramatic extension of the method to include σ-electrons, known as the extended Hückel method (EHM), was developed by Roald Hoffmann. The extended Hückel method gives some degree of quantitative accuracy for organic molecules in general and was used to provide computational justification for the Woodward–Hoffmann rules. To distinguish the original approach from Hoffmann's extension, the Hückel method is also known as the simple Hückel method (SHM).

<span class="mw-page-title-main">Antibonding molecular orbital</span> Molecular orbital which weakens chemical bonding

In theoretical chemistry, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more nodes in the bonding region between the nuclei. The density of the electrons in the orbital is concentrated outside the bonding region and acts to pull one nucleus away from the other and tends to cause mutual repulsion between the two atoms. This is in contrast to a bonding molecular orbital, which has a lower energy than that of the separate atoms, and is responsible for chemical bonds.

<span class="mw-page-title-main">Bent's rule</span> Rule in geometry of individual molecules

In chemistry, Bent's rule describes and explains the relationship between the orbital hybridization and the electronegativities of substituents. The rule was stated by Henry A. Bent as follows:

Atomic s character concentrates in orbitals directed toward electropositive substituents.

A molecular orbital diagram, or MO diagram, is a qualitative descriptive tool explaining chemical bonding in molecules in terms of molecular orbital theory in general and the linear combination of atomic orbitals (LCAO) method in particular. A fundamental principle of these theories is that as atoms bond to form molecules, a certain number of atomic orbitals combine to form the same number of molecular orbitals, although the electrons involved may be redistributed among the orbitals. This tool is very well suited for simple diatomic molecules such as dihydrogen, dioxygen, and carbon monoxide but becomes more complex when discussing even comparatively simple polyatomic molecules, such as methane. MO diagrams can explain why some molecules exist and others do not. They can also predict bond strength, as well as the electronic transitions that can take place.

<span class="mw-page-title-main">Sextuple bond</span> Covalent bond involving 12 bonding electrons

A sextuple bond is a type of covalent bond involving 12 bonding electrons and in which the bond order is 6. The only known molecules with true sextuple bonds are the diatomic dimolybdenum (Mo2) and ditungsten (W2), which exist in the gaseous phase and have boiling points of 4,639 °C (8,382 °F) and 5,930 °C (10,710 °F) respectively.

A non-bonding orbital, also known as non-bonding molecular orbital (NBMO), is a molecular orbital whose occupation by electrons neither increases nor decreases the bond order between the involved atoms. Non-bonding orbitals are often designated by the letter n in molecular orbital diagrams and electron transition notations. Non-bonding orbitals are the equivalent in molecular orbital theory of the lone pairs in Lewis structures. The energy level of a non-bonding orbital is typically in between the lower energy of a valence shell bonding orbital and the higher energy of a corresponding antibonding orbital. As such, a non-bonding orbital with electrons would commonly be a HOMO.

In theoretical chemistry, the bonding orbital is used in molecular orbital (MO) theory to describe the attractive interactions between the atomic orbitals of two or more atoms in a molecule. In MO theory, electrons are portrayed to move in waves. When more than one of these waves come close together, the in-phase combination of these waves produces an interaction that leads to a species that is greatly stabilized. The result of the waves’ constructive interference causes the density of the electrons to be found within the binding region, creating a stable bond between the two species.

References

  1. Herzberg, Gerhard (1929) "Zum Aufbau der zweiatomigen Moleküle" Zeitschrift für Physik57: 601-630
  2. Dr. S.P. Jauhar. Modern's abc Chemistry.
  3. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " Bond number ". doi : 10.1351/goldbook.B00705
  4. Clark R. Landis; Frank Weinhold (2005). Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge, UK: Cambridge University Press. pp. 91–92. ISBN   978-0-521-83128-4.
  5. Jonathan Clayden; Greeves, Nick; Stuart Warren (2012). Organic Chemistry (2nd ed.). Oxford University Press. p. 91. ISBN   978-0-19-927029-3.
  6. Housecroft, C. E.; Sharpe, A. G. (2012). Inorganic Chemistry (4th ed.). Prentice Hall. pp. 35–37. ISBN   978-0-273-74275-3.
  7. 1 2 T. A. Manz (2017). "Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders". RSC Adv. 7 (72): 45552–45581. Bibcode:2017RSCAd...745552M. doi: 10.1039/c7ra07400j .
  8. Bruce Averill and Patricia Eldredge, Chemistry: Principles, Patterns, and Applications (Pearson/Prentice Hall, 2007), 409.
  9. Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Prentice-Hall. p. 567. ISBN   0-205-12770-3.
  10. Coulson, Charles Alfred (7 February 1939). "The electronic structure of some polyenes and aromatic molecules. VII. Bonds of fractional order by the molecular orbital method". Proceedings of the Royal Society A. 169 (938): 413–428. Bibcode:1939RSPSA.169..413C. doi: 10.1098/rspa.1939.0006 .
  11. Sannigrahi, A. B.; Kar, Tapas (August 1988). "Molecular orbital theory of bond order and valency". Journal of Chemical Education. 65 (8): 674–676. Bibcode:1988JChEd..65..674S. doi:10.1021/ed065p674 . Retrieved 5 December 2020.
  12. IUPAC Gold Book bond order
  13. Pauling, Linus (March 1, 1947). "Atomic Radii and Interatomic Distances in Metals". Journal of the American Chemical Society. 69 (3): 542–553. doi:10.1021/ja01195a024.