# Singlet state

Last updated

In quantum mechanics, a singlet state usually refers to a system in which all electrons are paired. The term 'singlet' originally meant a linked set of particles whose net angular momentum is zero, that is, whose overall spin quantum number $s=0$ . As a result, there is only one spectral line of a singlet state. In contrast, a doublet state contains one unpaired electron and shows splitting of spectral lines into a doublet; and a triplet state has two unpaired electrons and shows threefold splitting of spectral lines.

## History

Singlets and the related spin concepts of doublets and triplets occur frequently in atomic physics and nuclear physics, where one often needs to determine the total spin of a collection of particles. Since the only observed fundamental particle with zero spin is the extremely inaccessible Higgs boson, singlets in everyday physics are necessarily composed of sets of particles whose individual spins are non-zero, e.g. 1/2 or 1.

The origin of the term "singlet" is that bound quantum systems with zero net angular momentum emit photons within a single spectral line, as opposed to double lines (doublet state) or triple lines (triplet state).  The number of spectral lines $n$ in this singlet-style terminology has a simple relationship to the spin quantum number: $n=2s+1$ , and $s=(n-1)/2$ .

Singlet-style terminology is also used for systems whose mathematical properties are similar or identical to angular momentum spin states, even when traditional spin is not involved. In particular, the concept of isospin was developed early in the history of particle physics to address the remarkable similarities of protons and neutrons. Within atomic nuclei, protons and neutrons behave in many ways as if they were a single type of particle, the nucleon, with two states. The proton-neutron pair thus by analogy was referred to as a doublet, and the hypothesized underlying nucleon was assigned a spin-like doublet quantum number $I_{3}={\tfrac {1}{2}}$ to differentiate between those two states. Thus the neutron became a nucleon with isospin $I_{3}(n)=-{\tfrac {1}{2}}$ , and the proton a nucleon with $I_{3}(p)=+{\tfrac {1}{2}}$ . The isospin doublet notably shares the same SU(2) mathematical structure as the $s={\tfrac {1}{2}}$ angular momentum doublet. It should be mentioned that this early particle physics focus on nucleons was subsequently replaced by the more fundamental quark model, in which a proton or neutron is interpreted as bound systems of three quarks. The isospin analogy also applies to quarks, and is the source of the names up (as in "isospin up") and down (as in "isospin down") for the quarks found in protons and neutrons.

While for angular momentum states the singlet-style terminology is seldom used beyond triplets (spin=1), it has proven historically useful for describing much larger particle groups and subgroups that share certain features and are distinguished from each other by quantum numbers beyond spin. An example of this broader use of singlet-style terminology is the nine-member "nonet" of the pseudoscalar mesons.

## Examples

The simplest possible angular momentum singlet is a set (bound or unbound) of two spin 1/2 (fermion) particles that are oriented so that their spin directions ("up" and "down") oppose each other; that is, they are antiparallel.

The simplest possible bound particle pair capable of exhibiting the singlet state is positronium, which consists of an electron and positron (antielectron) bound by their opposite electric charges. The electron and positron in positronium can also have identical or parallel spin orientations, which results in an experimentally distinct form of positronium with a spin 1 or triplet state.

An unbound singlet consists of a pair of entities small enough to exhibit quantum behavior (e.g. particles, atoms, or small molecules), not necessarily of the same type, for which four conditions hold:

1. The spins of the two entities are of equal magnitude.
2. The current spin values of both entities originated within a single well-defined quantum event (wave function) at some earlier location in classical space and time.
3. The originating wave function relates the two entities in such a way that their net angular momentum must be zero, which in turn means that if and when they are detected experimentally, conservation of angular momentum will require their spins to be in full opposition (antiparallel).
4. Their spin states have remained unperturbed since the originating quantum event which is equivalent to asserting that there exists no classical information (observation) of their status anywhere within the universe.

Any spin value can be used for the pair, but the entanglement effect will be strongest both mathematically and experimentally if the spin magnitude is as small as possible, with the maximum possible effect occurring for entities with spin 1/2 (such as electrons and positrons). Early thought experiments for unbound singlets usually assumed the use of two antiparallel spin 1/2 electrons. However, actual experiments have tended to focus instead on using pairs of spin 1 photons. While the entanglement effect is somewhat less pronounced with such spin 1 particles, photons are easier to generate in correlated pairs and (usually) easier to keep in an unperturbed quantum state.

## Mathematical representations

The ability of positronium to form both singlet and triplet states is described mathematically by saying that the product of two doublet representations (meaning the electron and positron, which are both spin 1/2 doublets) can be decomposed into the sum of an adjoint representation (the triplet or spin 1 state) and a trivial representation (the singlet or spin 0 state). While the particle interpretation of the positronium triplet and singlet states is arguably more intuitive, the mathematical description enables precise calculations of quantum states and probabilities.

This greater mathematical precision for example makes it possible to assess how singlets and doublets behave under rotation operations. Since a spin 1/2 electron transforms as a doublet under rotation, its experimental response to rotation can be predicted by using the fundamental representation of that doublet, specifically the Lie group SU(2).  Applying the operator ${\vec {S}}^{2}$ to the spin state of the electron thus will always result in ${\textstyle \hbar ^{2}\left({\frac {1}{2}}\right)\left({\frac {1}{2}}+1\right)=\left({\frac {3}{4}}\right)\hbar ^{2}}$ , or spin 1/2, since the spin-up and spin-down states are both eigenstates of the operator with the same eigenvalue.

Similarly, for a system of two electrons it is possible to measure the total spin by applying $\left({\vec {S}}_{1}+{\vec {S}}_{2}\right)^{2}$ , where ${\vec {S}}_{1}$ acts on electron 1 and ${\vec {S}}_{2}$ acts on electron 2. Since this system has two possible spins, it also has two possible eigenvalues and corresponding eigenstates for the total spin operator, corresponding to the spin 0 and spin 1 states.

## Singlets and entangled states

It is important to realize that particles in singlet states need not be locally bound to each other. For example, when the spin states of two electrons are correlated by their emission from a single quantum event that conserves angular momentum, the resulting electrons remain in a shared singlet state even as their separation in space increases indefinitely over time, provided only that their angular momentum states remain unperturbed. In Dirac notation this distance-indifferent singlet state is usually represented as:

${\frac {1}{\sqrt {2}}}\left(\left|\uparrow \downarrow \right\rangle -\left|\downarrow \uparrow \right\rangle \right).$ The possibility of spatially extended unbound singlet states has considerable historical and even philosophical importance, since considering such states contributed importantly to the theoretical and experimental exploration and verification of what is now called quantum entanglement. Along with Podolsky and Rosen, Einstein proposed the EPR paradox thought experiment to help define his concerns with what he viewed as the non-locality of spatially separated entangled particles, using it in an argument that quantum mechanics was incomplete. In 1951 David Bohm formulated a version of the paradox" using spin singlet states  .

The difficulty captured by the EPR-Bohm thought experiment was that by measuring a spatial component of the angular momentum of either of two particles that have been prepared in a spatially distributed singlet state, the quantum state of the remaining particle, conditioned on the measurement result obtained, appears to be "instantaneously" altered, even if the two particles have over time become separated by light years of distance. Decades later John Stewart Bell, who was a strong advocate of Einstein's locality-first perspective, proved Bell's theorem and showed that it could be used to assess the existence or non-existence of singlet entanglement experimentally. The irony was that instead of disproving entanglement, which was Bell's hope[ citation needed ], subsequent experiments instead established the reality of entanglement. In fact, there now exist commercial quantum encryption devices whose operation depends fundamentally on the existence and behavior of spatially extended singlets.[ citation needed ]

A weaker form of Einstein's locality principle remains intact, which is this: Classical information cannot be transmitted faster than the speed of light c, not even by using quantum entanglement events. This form of locality is weaker than the notion of Einstein locality" or local realism" used in the EPR and Bell's Theorem papers, but sufficient to prevent the emergence of causality paradoxes.

## Related Research Articles In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks. Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified as fermions because they have half-integer spin. In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in so-called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive. Deuterium is one of two stable isotopes of hydrogen. The nucleus of a deuterium atom, called a deuteron, contains one proton and one neutron, whereas the far more common protium has no neutrons in the nucleus. Deuterium has a natural abundance in Earth's oceans of about one atom in 6420 of hydrogen. Thus deuterium accounts for approximately 0.0156% of all the naturally occurring hydrogen in the oceans, while protium accounts for more than 99.98%. The abundance of deuterium changes slightly from one kind of natural water to another. In particle physics, mesons are hadronic subatomic particles composed of an equal number of quarks and antiquarks, usually one of each, bound together by strong interactions. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometer (1×10−15 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths of a microsecond. Heavier mesons decay to lighter mesons and ultimately to stable electrons, neutrinos and photons. In chemistry and physics, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. In particle physics, a pion is any of three subatomic particles:
π0
,
π+
, and
π
. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions
π+
and
π
decaying after a mean lifetime of 26.033 nanoseconds, and the neutral pion
π0
decaying after a much shorter lifetime of 85 attoseconds. Charged pions most often decay into muons and muon neutrinos, while neutral pions generally decay into gamma rays. In particle physics, a lepton is an elementary particle of half-integer spin that does not undergo strong interactions. Two main classes of leptons exist: charged leptons, and neutral leptons. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron. In physical sciences, a subatomic particle is a particle that is smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles, or an elementary particle, which is not composed of other particles. Particle physics and nuclear physics study these particles and how they interact. In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy and momentum of the initial pair are conserved in the process and distributed among a set of other particles in the final state. Antiparticles have exactly opposite additive quantum numbers from particles, so the sums of all quantum numbers of such an original pair are zero. Hence, any set of particles may be produced whose total quantum numbers are also zero as long as conservation of energy and conservation of momentum are obeyed.

In particle physics, the hyperchargeY of a particle is a quantum number conserved under the strong interaction. The concept of hypercharge provides a single charge operator that accounts for properties of isospin, electric charge, and flavour. The hypercharge is useful to classify hadrons; the similarly named weak hypercharge has an analogous role in the electroweak interaction. In chemistry and quantum physics, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be known with precision at the same time as the system's energy—and their corresponding eigenspaces. Together, a specification of all of the quantum numbers of a quantum system fully characterize a basis state of the system, and can in principle be measured together.

In nuclear physics and particle physics, isospin (I) is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons.

In atomic physics, the spin quantum number is a quantum number which describes the intrinsic angular momentum of an electron or other particle. The phrase was originally used to describe the fourth of a set of quantum numbers, which completely describe the quantum state of an electron in an atom. The name comes from a physical spinning of the electron about an axis, as proposed by Uhlenbeck and Goudsmit. The value of ms is the component of spin angular momentum parallel to a given direction, which can be either +1/2 or –1/2. In quantum mechanics, a triplet is a quantum state of a system with a spin of quantum number s=1, such that there are three allowed values of the spin component, ms = −1, 0, and +1.

In particle physics, flavour or flavor refers to the species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations.

In chemistry and physics, the exchange interaction is a quantum mechanical effect that only occurs between identical particles. Despite sometimes being called an exchange force in an analogy to classical force, it is not a true force as it lacks a force carrier.

The Delta baryons are a family of subatomic particle made of three up or down quarks.

The neutron magnetic moment is the intrinsic magnetic dipole moment of the neutron, symbol μn. Protons and neutrons, both nucleons, comprise the nucleus of atoms, and both nucleons behave as small magnets whose strengths are measured by their magnetic moments. The neutron interacts with normal matter through either the nuclear force or its magnetic moment. The neutron's magnetic moment is exploited to probe the atomic structure of materials using scattering methods and to manipulate the properties of neutron beams in particle accelerators. The neutron was determined to have a magnetic moment by indirect methods in the mid 1930s. Luis Alvarez and Felix Bloch made the first accurate, direct measurement of the neutron's magnetic moment in 1940. The existence of the neutron's magnetic moment indicates the neutron is not an elementary particle, because for an elementary particle to have an intrinsic magnetic moment, it must have both spin and electric charge. The neutron has spin 1/2 ħ, but no net charge. The existence of the neutron's magnetic moment was puzzling and defied a correct explanation until the quark model for particles was developed in the 1960s. The neutron is composed of three quarks, and the magnetic moments of these elementary particles combine to give the neutron its magnetic moment.

In particle physics, isospin multiplets are families of hadrons with approximately equal masses. All particles within a multiplet, have the same spin, parity, and baryon numbers, but differ in electric charges.

1. Griffiths, D.J. (1995). . Prentice Hall. p.  165.
2. Sakurai, J.J. (1985). Modern Quantum Mechanics. Addison Wesley.
3. Bohm, D. (1951). Quantum Theory, Prentice-Hall, Englewood Cliffs, page 29, and Chapter 5 section 3, and Chapter 22 Section 19.