This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(September 2024) |
Modern physics |
---|
Part of a series of articles about |
Quantum mechanics |
---|
Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics.
From classical probability theory, we know that the expectation of a random variable X is defined by its distribution DX by
assuming, of course, that the random variable is integrable or that the random variable is non-negative. Similarly, let A be an observable of a quantum mechanical system. A is given by a densely defined self-adjoint operator on H. The spectral measure of A defined by
uniquely determines A and conversely, is uniquely determined by A. EA is a Boolean homomorphism from the Borel subsets of R into the lattice Q of self-adjoint projections of H. In analogy with probability theory, given a state S, we introduce the distribution of A under S which is the probability measure defined on the Borel subsets of R by
Similarly, the expected value of A is defined in terms of the probability distribution DA by
Note that this expectation is relative to the mixed state S which is used in the definition of DA.
Remark. For technical reasons, one needs to consider separately the positive and negative parts of A defined by the Borel functional calculus for unbounded operators.
One can easily show:
Note that if S is a pure state corresponding to the vector , then:
The trace of an operator A is written as follows:
Of particular significance for describing randomness of a state is the von Neumann entropy of Sformally defined by
Actually, the operator S log2S is not necessarily trace-class. However, if S is a non-negative self-adjoint operator not of trace class we define Tr(S) = +∞. Also note that any density operator S can be diagonalized, that it can be represented in some orthonormal basis by a (possibly infinite) matrix of the form
and we define
The convention is that , since an event with probability zero should not contribute to the entropy. This value is an extended real number (that is in [0, ∞]) and this is clearly a unitary invariant of S.
Remark. It is indeed possible that H(S) = +∞ for some density operator S. In fact T be the diagonal matrix
T is non-negative trace class and one can show T log2T is not trace-class.
Theorem. Entropy is a unitary invariant.
In analogy with classical entropy (notice the similarity in the definitions), H(S) measures the amount of randomness in the state S. The more dispersed the eigenvalues are, the larger the system entropy. For a system in which the space H is finite-dimensional, entropy is maximized for the states S which in diagonal form have the representation
For such an S, H(S) = log2n. The state S is called the maximally mixed state.
Recall that a pure state is one of the form
for ψ a vector of norm 1.
Theorem. H(S) = 0 if and only if S is a pure state.
For S is a pure state if and only if its diagonal form has exactly one non-zero entry which is a 1.
Entropy can be used as a measure of quantum entanglement.
Consider an ensemble of systems described by a Hamiltonian H with average energy E. If H has pure-point spectrum and the eigenvalues of H go to +∞ sufficiently fast, e−r H will be a non-negative trace-class operator for every positive r.
The Gibbs canonical ensemble is described by the state
Where β is such that the ensemble average of energy satisfies
and
This is called the partition function; it is the quantum mechanical version of the canonical partition function of classical statistical mechanics. The probability that a system chosen at random from the ensemble will be in a state corresponding to energy eigenvalue is
Under certain conditions, the Gibbs canonical ensemble maximizes the von Neumann entropy of the state subject to the energy conservation requirement.[ clarification needed ]
For open systems where the energy and numbers of particles may fluctuate, the system is described by the grand canonical ensemble, described by the density matrix
where the N1, N2, ... are the particle number operators for the different species of particles that are exchanged with the reservoir. Note that this is a density matrix including many more states (of varying N) compared to the canonical ensemble.
The grand partition function is
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:
In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .
In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.
In linear algebra, the Frobenius companion matrix of the monic polynomial is the square matrix defined as
In quantum mechanics, a quantum operation is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment. In the context of quantum computation, a quantum operation is called a quantum channel.
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
In probability and statistics, the Dirichlet distribution, often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.
In information theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .
In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is
In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.
In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.
In the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring R, where each block along the diagonal, called a Jordan block, has the following form:
In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator.
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size.
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as where is the density matrix of the state and is the trace operation. The purity defines a measure on quantum states, giving information on how much a state is mixed.
In mathematics, there are many kinds of inequalities involving matrices and linear operators on Hilbert spaces. This article covers some important operator inequalities connected with traces of matrices.