Quantum image processing

Last updated

Quantum image processing (QIMP) is using quantum computing or quantum information processing to create and work with quantum images. [1] [2]

Contents

Due to some of the properties inherent to quantum computation, notably entanglement and parallelism, it is hoped that QIMP technologies will offer capabilities and performances that surpass their traditional equivalents, in terms of computing speed, security, and minimum storage requirements. [2] [3]

Background

A. Y. Vlasov's work [4] in 1997 focused on using a quantum system to recognize orthogonal images. This was followed by efforts using quantum algorithms to search specific patterns in binary images [5] and detect the posture of certain targets. [6] Notably, more optics-based interpretations for quantum imaging were initially experimentally demonstrated in [7] and formalized in [8] after seven years.

In 2003, Salvador Venegas-Andraca and S. Bose presented Qubit Lattice, the first published general model for storing, processing and retrieving images using quantum systems. [9] [10] Later on, in 2005, Latorre proposed another kind of representation, called the Real Ket, [11] whose purpose was to encode quantum images as a basis for further applications in QIMP. Furthermore, in 2010 Venegas-Andraca and Ball presented a method for storing and retrieving binary geometrical shapes in quantum mechanical systems in which it is shown that maximally entangled qubits can be used to reconstruct images without using any additional information. [12]

Technically, these pioneering efforts with the subsequent studies related to them can be classified into three main groups: [3]

A survey of quantum image representation has been published in. [14] Furthermore, the recently published book Quantum Image Processing [15] provides a comprehensive introduction to quantum image processing, which focuses on extending conventional image processing tasks to the quantum computing frameworks. It summarizes the available quantum image representations and their operations, reviews the possible quantum image applications and their implementation, and discusses the open questions and future development trends.

Quantum image representations

There are various approaches for quantum image representation, that are usually based on the encoding of color information. A common representation is FRQI (Flexible Representation for Quantum Images), that captures the color and position at every pixel of the image, and defined as: [16] where is the position and the color with a vector of angles . As it can be seen, is a regular qubit state of the form , with basis states and , as well as amplitudes and that satisfy . [17]

Another common representation is MCQI (Multi-Channel Representation for Quantum Images), that uses the RGB channels with quantum states and following FRQI definition: [16]

Departing from the angle-based approach of FRQI and MCQI, and using a qubit sequence, NEQR (Novel Enhanced Representation for Quantum Images) is another representation approach, that uses a function to encode color values for a image: [16]

Quantum image manipulations

A lot of the effort in QIMP has been focused on designing algorithms to manipulate the position and color information encoded using flexible representation of quantum images (FRQI) and its many variants. For instance, FRQI-based fast geometric transformations including (two-point) swapping, flip, (orthogonal) rotations [18] and restricted geometric transformations to constrain these operations to a specified area of an image [19] were initially proposed. Recently, NEQR-based quantum image translation to map the position of each picture element in an input image into a new position in an output image [20] and quantum image scaling to resize a quantum image [21] were discussed. While FRQI-based general form of color transformations were first proposed by means of the single qubit gates such as X, Z, and H gates. [22] Later, Multi-Channel Quantum Image-based channel of interest (CoI) operator to entail shifting the grayscale value of the preselected color channel and the channel swapping (CS) operator to swap the grayscale values between two channels have been fully discussed. [23]

To illustrate the feasibility and capability of QIMP algorithms and application, researchers always prefer to simulate the digital image processing tasks on the basis of the QIRs that we already have. By using the basic quantum gates and the aforementioned operations, so far, researchers have contributed to quantum image feature extraction, [24] quantum image segmentation, [25] quantum image morphology, [26] quantum image comparison, [27] quantum image filtering, [28] quantum image classification, [29] quantum image stabilization, [30] among others. In particular, QIMP-based security technologies have attracted extensive interest of researchers as presented in the ensuing discussions. Similarly, these advancements have led to many applications in the areas of watermarking, [31] [32] [33] encryption, [34] and steganography [35] etc., which form the core security technologies highlighted in this area.

In general, the work pursued by the researchers in this area are focused on expanding the applicability of QIMP to realize more classical-like digital image processing algorithms; propose technologies to physically realize the QIMP hardware; or simply to note the likely challenges that could impede the realization of some QIMP protocols.

Quantum image transform

By encoding and processing the image information in quantum-mechanical systems, a framework of quantum image processing is presented, where a pure quantum state encodes the image information: to encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states.

Given an image , where represents the pixel value at position with and , a vector with elements can be formed by letting the first elements of be the first column of , the next elements the second column, etc.

A large class of image operations is linear, e.g., unitary transformations, convolutions, and linear filtering. In the quantum computing, the linear transformation can be represented as with the input image state and the output image state . A unitary transformation can be implemented as a unitary evolution. Some basic and commonly used image transforms (e.g., the Fourier, Hadamard, and Haar wavelet transforms) can be expressed in the form , with the resulting image and a row (column) transform matrix .

The corresponding unitary operator can then be written as . Several commonly used two-dimensional image transforms, such as the Haar wavelet, Fourier, and Hadamard transforms, are experimentally demonstrated on a quantum computer, [36] with exponential speedup over their classical counterparts. In addition, a novel highly efficient quantum algorithm is proposed and experimentally implemented for detecting the boundary between different regions of a picture: It requires only one single-qubit gate in the processing stage, independent of the size of the picture.

See also

Related Research Articles

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.

<span class="mw-page-title-main">Rabi cycle</span> Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

<span class="mw-page-title-main">Quantum logic gate</span> Basic circuit in quantum computing

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. Quantum logic gates are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.

Quantum error correction (QEC) is a set of techniques used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum state preparation, and faulty measurements. Effective quantum error correction would allow quantum computers with low qubit fidelity to execute algorithms of higher complexity or greater circuit depth.

<span class="mw-page-title-main">Tomographic reconstruction</span> Estimate object properties from a finite number of projections

Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner. Recent developments have seen the Radon transform and its inverse used for tasks related to realistic object insertion required for testing and evaluating computed tomography use in airport security.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way quantum computer, also known as measurement-based quantum computer (MBQC), is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

Amplitude amplification is a technique in quantum computing which generalizes the idea behind Grover's search algorithm, and gives rise to a family of quantum algorithms. It was discovered by Gilles Brassard and Peter Høyer in 1997, and independently rediscovered by Lov Grover in 1998.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns.

<span class="mw-page-title-main">Kicked rotator</span>

The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian

In quantum computing, the quantum phase estimation algorithm is a quantum algorithm to estimate the phase corresponding to an eigenvalue of a given unitary operator. Because the eigenvalues of a unitary operator always have unit modulus, they are characterized by their phase, and therefore the algorithm can be equivalently described as retrieving either the phase or the eigenvalue itself. The algorithm was initially introduced by Alexei Kitaev in 1995.

Linear optical quantum computing or linear optics quantum computation (LOQC), also photonic quantum computing (PQC), is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

The KLM scheme or KLM protocol is an implementation of linear optical quantum computing (LOQC) developed in 2000 by Emanuel Knill, Raymond Laflamme and Gerard J. Milburn. This protocol allows for the creation of universal quantum computers using solely linear optical tools. The KLM protocol uses linear optical elements, single-photon sources and photon detectors as resources to construct a quantum computation scheme involving only ancilla resources, quantum teleportations and error corrections.

Quantum counting algorithm is a quantum algorithm for efficiently counting the number of solutions for a given search problem. The algorithm is based on the quantum phase estimation algorithm and on Grover's search algorithm.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. It is one of the central quantities used to qualify the utility of an input state, especially in Mach–Zehnder interferometer-based phase or parameter estimation. It is shown that the quantum Fisher information can also be a sensitive probe of a quantum phase transition. The quantum Fisher information of a state with respect to the observable is defined as

In the context of quantum computing, the quantum walk search is a quantum algorithm for finding a marked node in a graph.

References

  1. Venegas-Andraca, Salvador E. (2005). Discrete Quantum Walks and Quantum Image Processing (DPhil thesis). The University of Oxford.
  2. 1 2 3 4 Iliyasu, A.M. (2013). "Towards realising secure and efficient image and video processing applications on quantum computers". Entropy. 15 (8): 2874–2974. Bibcode:2013Entrp..15.2874I. doi: 10.3390/e15082874 .
  3. 1 2 Yan, F.; Iliyasu, A.M.; Le, P.Q. (2017). "Quantum image processing: A review of advances in its security technologies". International Journal of Quantum Information. 15 (3): 1730001–44. Bibcode:2017IJQI...1530001Y. doi: 10.1142/S0219749917300017 .
  4. Vlasov, A.Y. (1997). "Quantum computations and images recognition". arXiv: quant-ph/9703010 . Bibcode:1997quant.ph..3010V.{{cite journal}}: Cite journal requires |journal= (help)
  5. Schutzhold, R. (2003). "Pattern recognition on a quantum computer". Physical Review A. 67 (6): 062311. arXiv: quant-ph/0208063 . Bibcode:2003PhRvA..67f2311S. doi:10.1103/PhysRevA.67.062311.
  6. Beach, G.; Lomont, C.; Cohen, C. (2003). "Quantum image processing (QuIP)". 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings. pp. 39–40. doi:10.1109/AIPR.2003.1284246. ISBN   0-7695-2029-4. S2CID   32051928.
  7. Pittman, T.B.; Shih, Y.H.; Strekalov, D.V. (1995). "Optical imaging by means of two-photon quantum entanglement". Physical Review A. 52 (5): R3429–R3432. Bibcode:1995PhRvA..52.3429P. doi:10.1103/PhysRevA.52.R3429. PMID   9912767.
  8. Lugiato, L.A.; Gatti, A.; Brambilla, E. (2002). "Quantum imaging". Journal of Optics B. 4 (3): S176–S183. arXiv: quant-ph/0203046 . Bibcode:2002JOptB...4S.176L. doi:10.1088/1464-4266/4/3/372. S2CID   9640455.
  9. Venegas-Andraca, S.E.; Bose, S. (2003). "Quantum Computation and Image Processing: New Trends in Artificial Intelligence" (PDF). Proceedings of the 2003 IJCAI International Conference on Artificial Intelligence: 1563–1564.
  10. Venegas-Andraca, S.E.; Bose, S. (2003). "Storing, processing, and retrieving an image using quantum mechanics". In Donkor, Eric; Pirich, Andrew R; Brandt, Howard E (eds.). Quantum Information and Computation. Vol. 5105. pp. 134–147. Bibcode:2003SPIE.5105..137V. doi:10.1117/12.485960. S2CID   120495441.{{cite book}}: |journal= ignored (help)
  11. Latorre, J.I. (2005). "Image compression and entanglement". arXiv: quant-ph/0510031 . Bibcode:2005quant.ph.10031L.{{cite journal}}: Cite journal requires |journal= (help)
  12. Venegas-Andraca, S.E.; Ball, J. (2010). "Processing Images in Entangled Quantum Systems". Quantum Informatiom Processing. 9 (1): 1–11. Bibcode:2010QuIP....9....1V. doi:10.1007/s11128-009-0123-z. S2CID   34988263.
  13. Gatti, A.; Brambilla, E. (2008). "Chapter 5 Quantum imaging". Quantum imaging. Progress in Optics. Vol. 51. pp. 251–348. doi:10.1016/S0079-6638(07)51005-X. ISBN   978-0-444-53211-4.
  14. Yan, F.; Iliyasu, A.M.; Venegas-Andraca, S.E. (2016). "A survey of quantum image representations". Quantum Informatiom Processing. 15 (1): 1–35. Bibcode:2016QuIP...15....1Y. doi:10.1007/s11128-015-1195-6. S2CID   31229136.
  15. Yan, Fei; Venegas-Andraca, Salvador E. (2020). Quantum Image Processing. Springer. ISBN   978-9813293304.
  16. 1 2 3 Yan, Fei; Venegas-Andraca, Salvador E. (2020), "Quantum Image Representations", Quantum Image Processing, Singapore: Springer Singapore, pp. 19–48, doi:10.1007/978-981-32-9331-1_2, ISBN   978-981-329-330-4 , retrieved 2024-10-31
  17. Yan, Fei; Venegas-Andraca, Salvador E. (2020), "Introduction and Overview", Quantum Image Processing, Singapore: Springer Singapore, pp. 1–17, doi:10.1007/978-981-32-9331-1_1, ISBN   978-981-329-330-4 , retrieved 2024-10-31
  18. Le, P.; Iliyasu, A.; Dong, F.; Hirota, K. (2010). "Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state". IAENG International Journal of Applied Mathematics. 40 (3): 113–123.
  19. Le, P.; Iliyasu, A.; Dong, F.; Hirota, K. (2011). "Strategies for designing geometric transformations on quantum images" (PDF). Theoretical Computer Science. 412 (15): 1406–1418. doi: 10.1016/j.tcs.2010.11.029 .
  20. Wang, J.; Jiang, N.; Wang, L. (2015). "Quantum image translation". Quantum Information Processing. 14 (5): 1589–1604. Bibcode:2015QuIP...14.1589W. doi:10.1007/s11128-014-0843-6. S2CID   33839291.
  21. Jiang, N.; Wang, J.; Mu, Y. (2015). "Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio". Quantum Information Processing. 14 (11): 4001–4026. Bibcode:2015QuIP...14.4001J. doi:10.1007/s11128-015-1099-5. S2CID   30804812.
  22. Le, P.; Iliyasu, A.; Dong, F.; Hirota, K. (2011). "Efficient colour transformations on quantum image". Journal of Advanced Computational Intelligence and Intelligent Informatics. 15 (6): 698–706. doi: 10.20965/jaciii.2011.p0698 .
  23. Sun, B.; Iliyasu, A.; Yan, F.; Garcia, J.; Dong, F.; Al-Asmari, A. (2014). "Multi-channel information operations on quantum images". Journal of Advanced Computational Intelligence and Intelligent Informatics. 18 (2): 140–149. doi: 10.20965/jaciii.2014.p0140 .
  24. Zhang, Y.; Lu, K.; Xu, K.; Gao, Y.; Wilson, R. (2015). "Local feature point extraction for quantum images". Quantum Information Processing. 14 (5): 1573–1588. Bibcode:2015QuIP...14.1573Z. doi:10.1007/s11128-014-0842-7. S2CID   20213446.
  25. Caraiman, S.; Manta, V. (2014). "Histogram-based segmentation of quantum images". Theoretical Computer Science. 529: 46–60. doi: 10.1016/j.tcs.2013.08.005 .
  26. Yuan, S.; Mao, X.; Li, T.; Xue, Y.; Chen, L.; Xiong, Q. (2015). "Quantum morphology operations based on quantum representation model". Quantum Information Processing. 14 (5): 1625–1645. Bibcode:2015QuIP...14.1625Y. doi:10.1007/s11128-014-0862-3. S2CID   44828546.
  27. Yan, F.; Iliyasu, A.; Le, P.; Sun, B.; Dong, F.; Hirota, K. (2013). "A parallel comparison of multiple pairs of images on quantum computers". International Journal of Innovative Computing and Applications. 5 (4): 199–212. doi:10.1504/IJICA.2013.062955.
  28. Caraiman, S.; Manta, V. (2013). "Quantum image filtering in the frequency domain". Advances in Electrical and Computer Engineering. 13 (3): 77–84. doi: 10.4316/AECE.2013.03013 .
  29. Ruan, Y.; Chen, H.; Tan, J. (2016). "Quantum computation for large-scale image classification". Quantum Information Processing. 15 (10): 4049–4069. Bibcode:2016QuIP...15.4049R. doi:10.1007/s11128-016-1391-z. S2CID   27476075.
  30. Yan, F.; Iliyasu, A.; Yang, H.; Hirota, K. (2016). "Strategy for quantum image stabilization". Science China Information Sciences. 59 (5): 052102. doi:10.1007/s11432-016-5541-9. S2CID   255200782.
  31. Iliyasu, A.; Le, P.; Dong, F.; Hirota, K. (2012). "Watermarking and authentication of quantum images based on restricted geometric transformations". Information Sciences. 186 (1): 126–149. doi:10.1016/j.ins.2011.09.028.
  32. Heidari, S.; Naseri, M. (2016). "A Novel Lsb based Quantum Watermarking". International Journal of Theoretical Physics. 55 (10): 4205–4218. Bibcode:2016IJTP...55.4205H. doi:10.1007/s10773-016-3046-3. S2CID   124870364.
  33. Zhang, W.; Gao, F.; Liu, B.; Jia, H. (2013). "A quantum watermark protocol". International Journal of Theoretical Physics. 52 (2): 504–513. Bibcode:2013IJTP...52..504Z. doi:10.1007/s10773-012-1354-9. S2CID   122413780.
  34. Zhou, R.; Wu, Q.; Zhang, M.; Shen, C. (2013). "Quantum image encryption and decryption algorithms based on quantum image geometric transformations. International". Journal of Theoretical Physics. 52 (6): 1802–1817. doi:10.1007/s10773-012-1274-8. S2CID   121269114.
  35. Jiang, N.; Zhao, N.; Wang, L. (2015). "Lsb based quantum image steganography algorithm". International Journal of Theoretical Physics. 55 (1): 107–123. doi: 10.1007/s10773-015-2640-0 . S2CID   120009979.
  36. Yao, Xi-Wei; Wang, Hengyan; Liao, Zeyang; Chen, Ming-Cheng; Pan, Jian; et al. (11 September 2017). "Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment". Physical Review X . 7 (3): 31041. arXiv: 1801.01465 . Bibcode:2017PhRvX...7c1041Y. doi:10.1103/physrevx.7.031041. ISSN   2160-3308. LCCN   2011201149. OCLC   706478714. S2CID   119205332.