Quantum teleportation

Last updated

Schematic video demonstrating individual steps of quantum teleportation. A quantum state Q is sent from station A to station B using a pair of entangled particles created by source S. Station A measures its two particles and communicates the result to station B, which chooses an appropriate device based on the received message. Due to the action of the device, the state of the particle of station B turns into Q.

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

Contents

One of the first scientific articles to investigate quantum teleportation is "Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels" [1] published by C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters in 1993, in which they proposed using dual communication methods to send/receive quantum information. It was experimentally realized in 1997 by two research groups, led by Sandu Popescu and Anton Zeilinger, respectively. [2] [3]

Experimental determinations [4] [5] of quantum teleportation have been made in information content including photons, atoms, electrons, and superconducting circuits  as well as distance, with 1,400 km (870 mi) being the longest distance of successful teleportation by Jian-Wei Pan's team using the Micius satellite for space-based quantum teleportation. [6]

Non-technical summary

In matters relating to quantum information theory, it is convenient to work with the simplest possible unit of information: the two-state system of the qubit. The qubit functions as the quantum analog of the classic computational part, the bit, as it can have a measurement value of both a 0 and a 1, whereas the classical bit can only be measured as a 0 or a 1. The quantum two-state system seeks to transfer quantum information from one location to another location without losing the information and preserving the quality of this information. This process involves moving the information between carriers and not movement of the actual carriers, similar to the traditional process of communications, as two parties remain stationary while the information (digital media, voice, text, etc.) is being transferred, contrary to the implications of the word "teleport". The main components needed for teleportation include a sender, the information (a qubit), a traditional channel, a quantum channel, and a receiver. The sender does not need to know the exact contents of the information being sent. The measurement postulate of quantum mechanics when a measurement is made upon a quantum state, any subsequent measurements will "collapse" or that the observed state will be lost creates an imposition within teleportation: if a sender measures their information, the state could collapse when the receiver obtains the data since the state had changed from when the sender made the initial measurement and in so making it different.

An interactive simulation of quantum teleportation in the Virtual Lab by Quantum Flytrap, available online. In this optical setup, qubits are encoded using the polarization of light. Teleportation occurs between the source photon (set to an arbitrary state) and one photon from an entangled pair. A Bell pair measurement is performed on the source photon and one entangled photon using a quantum CNOT gate, yielding two bits of classical information. The target photon is then rotated with two controllable waveplates based on this information. Quantum teleportation - interactive simulation in Virtual Lab by Quantum Flytrap.png
An interactive simulation of quantum teleportation in the Virtual Lab by Quantum Flytrap, available online. In this optical setup, qubits are encoded using the polarization of light. Teleportation occurs between the source photon (set to an arbitrary state) and one photon from an entangled pair. A Bell pair measurement is performed on the source photon and one entangled photon using a quantum CNOT gate, yielding two bits of classical information. The target photon is then rotated with two controllable waveplates based on this information.

For actual teleportation, it is required that an entangled quantum state be created for the qubit to be transferred. Entanglement imposes statistical correlations between otherwise distinct physical systems by creating or placing two or more separate particles into a single, shared quantum state. This intermediate state contains two particles whose quantum states are related to each other: measuring one particle's state provides information about the measurement of the other particle's state. These correlations hold even when measurements are chosen and performed independently, out of causal contact from one another, as verified in Bell test experiments. Thus, an observation resulting from a measurement choice made at one point in spacetime seems to instantaneously affect outcomes in another region, even though light hasn't yet had time to travel the distance, a conclusion seemingly at odds with special relativity. This is known as the EPR paradox. However, such correlations can never be used to transmit any information faster than the speed of light, a statement encapsulated in the no-communication theorem. Thus, teleportation as a whole can never be superluminal, as a qubit cannot be reconstructed until the accompanying classical information arrives.

The sender will combine the particle, of which the information is teleported, with one of the entangled particles, causing a change of the overall entangled quantum state. Of this changed state, the particles in receiver's possession are then sent to an analyzer that will measure the change of the entangled state. The "change" measurement will allow the receiver to recreate the original information that the sender had, resulting in the information being teleported or carried between two people that have different locations. Since the initial quantum information is "destroyed" as it becomes part of the entanglement state, the no-cloning theorem is maintained as the information is recreated from the entangled state and not copied during teleportation.

The quantum channel is the communication mechanism that is used for all quantum information transmission and is the channel used for teleportation (relationship of quantum channel to traditional communication channel is akin to the qubit being the quantum analog of the classical bit). However, in addition to the quantum channel, a traditional channel must also be used to accompany a qubit to "preserve" the quantum information. When the change measurement between the original qubit and the entangled particle is made, the measurement result must be carried by a traditional channel so that the quantum information can be reconstructed and the receiver can get the original information. Because of this need for the traditional channel, the speed of teleportation can be no faster than the speed of light (hence the no-communication theorem is not violated). The main advantage with this is that Bell states can be shared using photons from lasers, making teleportation achievable through open space, as there is no need to send information through physical cables or optical fibers.

Quantum states can be encoded in various degrees of freedom of atoms. For example, qubits can be encoded in the degrees of freedom of electrons surrounding the atomic nucleus or in the degrees of freedom of the nucleus itself. Thus, performing this kind of teleportation requires a stock of atoms at the receiving site, available for having qubits imprinted on them. [8]

As of 2015, the quantum states of single photons, photon modes, single atoms, atomic ensembles, defect centers in solids, single electrons, and superconducting circuits have been employed as information bearers. [9]

Understanding quantum teleportation requires a good grounding in finite-dimensional linear algebra, Hilbert spaces and projection matrices. A qubit is described using a two-dimensional complex number-valued vector space (a Hilbert space), which are the primary basis for the formal manipulations given below. A working knowledge of quantum mechanics is not absolutely required to understand the mathematics of quantum teleportation, although without such acquaintance, the deeper meaning of the equations may remain quite mysterious.

Protocol

Diagram for quantum teleportation of a photon Quantum teleportation diagram.PNG
Diagram for quantum teleportation of a photon

The resources required for quantum teleportation are a communication channel capable of transmitting two classical bits, a means of generating an entangled Bell state of qubits and distributing to two different locations, performing a Bell measurement on one of the Bell state qubits, and manipulating the quantum state of the other qubit from the pair. Of course, there must also be some input qubit (in the quantum state ) to be teleported. The protocol is then as follows:

  1. A Bell state is generated with one qubit sent to location A and the other sent to location B.
  2. A Bell measurement of the Bell state qubit and the qubit to be teleported ( ) is performed at location A. This yields one of four measurement outcomes which can be encoded in two classical bits of information. Both qubits at location A are then discarded.
  3. Using the classical channel, the two bits are sent from A to B. (This is the only potentially time-consuming step after step 1 since information transfer is limited by the speed of light.)
  4. As a result of the measurement performed at location A, the Bell state qubit at location B is in one of four possible states. Of these four possible states, one is identical to the original quantum state , and the other three are closely related. The identity of the state actually obtained is encoded in two classical bits and sent to location B. The Bell state qubit at location B is then modified in one of three ways, or not at all, which results in a qubit identical to , the state of the qubit that was chosen for teleportation.

It is worth noticing that the above protocol assumes that the qubits are individually addressable, meaning that the qubits are distinguishable and physically labeled. However, there can be situations where two identical qubits are indistinguishable due to the spatial overlap of their wave functions. Under this condition, the qubits cannot be individually controlled or measured. Nevertheless, a teleportation protocol analogous to that described above can still be (conditionally) implemented by exploiting two independently prepared qubits, with no need of an initial Bell state. This can be made by addressing the internal degrees of freedom of the qubits (e.g., spins or polarisations) by spatially localized measurements performed in separated regions A and B where the two spatially overlapping, indistinguishable qubits can be found. [10] This theoretical prediction has been then verified experimentally via polarized photons in a quantum optical setup. [11]

Experimental results and records

Work in 1998 verified the initial predictions, [2] and the distance of teleportation was increased in August 2004 to 600 meters, using optical fiber. [12] Subsequently, the record distance for quantum teleportation has been gradually increased to 16 kilometres (9.9 mi), [13] then to 97 km (60 mi), [14] and is now 143 km (89 mi), set in open air experiments in the Canary Islands, done between the two astronomical observatories of the Instituto de Astrofísica de Canarias. [14] There has been a recent record set (as of September 2015) using superconducting nanowire detectors that reached the distance of 102 km (63 mi) over optical fiber. [15] For material systems, the record distance is 21 metres (69 ft). [16]

A variant of teleportation called "open-destination" teleportation, with receivers located at multiple locations, was demonstrated in 2004 using five-photon entanglement. [17] Teleportation of a composite state of two single qubits has also been realized. [18] In April 2011, experimenters reported that they had demonstrated teleportation of wave packets of light up to a bandwidth of 10 MHz while preserving strongly nonclassical superposition states. [19] [20] In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. [21] On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. [22] [23] On 26 February 2015, scientists at the University of Science and Technology of China in Hefei, led by Chao-yang Lu and Jian-Wei Pan carried out the first experiment teleporting multiple degrees of freedom of a quantum particle. They managed to teleport the quantum information from ensemble of rubidium atoms to another ensemble of rubidium atoms over a distance of 150 metres (490 ft) using entangled photons. [24] [25] [26] In 2016, researchers demonstrated quantum teleportation with two independent sources which are separated by 6.5 km (4.0 mi) in Hefei optical fiber network. [27] In September 2016, researchers at the University of Calgary demonstrated quantum teleportation over the Calgary metropolitan fiber network over a distance of 6.2 km (3.9 mi). [28] In December 2020, as part of the INQNET collaboration, researchers achieved quantum teleportation over a total distance of 44 km (27.3 mi) with fidelities exceeding 90%. [29] [30]

Researchers have also successfully used quantum teleportation to transmit information between clouds of gas atoms, notable because the clouds of gas are macroscopic atomic ensembles. [31] [32]

It is also possible to teleport logical operations, see quantum gate teleportation. In 2018, physicists at Yale demonstrated a deterministic teleported CNOT operation between logically encoded qubits. [33]

Schematic of the quantum teleportation experiment performed by Zeilinger's group in 1997. For details, see the text. Conditional quantum teleportation of photon polarization.png
Schematic of the quantum teleportation experiment performed by Zeilinger's group in 1997. For details, see the text.

First proposed theoretically in 1993, quantum teleportation has since been demonstrated in many different guises. It has been carried out using two-level states of a single photon, a single atom and a trapped ion – among other quantum objects – and also using two photons. In 1997, two groups experimentally achieved quantum teleportation. The first group, led by Sandu Popescu, was based in Italy. An experimental group led by Anton Zeilinger followed a few months later.

The results obtained from experiments done by Popescu's group concluded that classical channels alone could not replicate the teleportation of linearly polarized state and an elliptically polarized state. The Bell state measurement distinguished between the four Bell states, which can allow for a 100% success rate of teleportation, in an ideal representation. [2]

Zeilinger's group produced a pair of entangled photons by implementing the process of parametric down-conversion. In order to ensure that the two photons cannot be distinguished by their arrival times, the photons were generated using a pulsed pump beam. The photons were then sent through narrow-bandwidth filters to produce a coherence time that is much longer than the length of the pump pulse. They then used a two-photon interferometry for analyzing the entanglement so that the quantum property could be recognized when it is transferred from one photon to the other. [3]

Photon 1 was polarized at 45° in the first experiment conducted by Zeilinger's group. Quantum teleportation is verified when both photons are detected in the state, which has a probability of 25%. Two detectors, f1 and f2, are placed behind the beam splitter, and recording the coincidence will identify the state. If there is a coincidence between detectors f1 and f2, then photon 3 is predicted to be polarized at a 45° angle. Photon 3 is passed through a polarizing beam splitter that selects +45° and −45° polarization. If quantum teleportation has happened, only detector d2, which is at the +45° output, will register a detection. Detector d1, located at the −45° output, will not detect a photon. If there is a coincidence between d2f1f2, with the 45° analysis, and a lack of a d1f1f2 coincidence, with −45° analysis, it is proof that the information from the polarized photon 1 has been teleported to photon 3 using quantum teleportation. [3]

Quantum teleportation over 143 km

Zeilinger's group developed an experiment using active feed-forward in real time and two free-space optical links, quantum and classical, between the Canary Islands of La Palma and Tenerife, a distance of over 143 kilometers. The results were published in 2012. In order to achieve teleportation, a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement assisted clock synchronization were implemented. The two locations were entangled to share the auxiliary state: [14]

La Palma and Tenerife can be compared to the quantum characters Alice and Bob. Alice and Bob share the entangled state above, with photon 2 being with Alice and photon 3 being with Bob. A third party, Charlie, provides photon 1 (the input photon) which will be teleported to Alice in the generalized polarization state:

where the complex numbers and are unknown to Alice or Bob.

Alice will perform a Bell-state measurement (BSM) that randomly projects the two photons onto one of the four Bell states with each one having a probability of 25%. Photon 3 will be projected onto , the input state. Alice transmits the outcome of the BSM to Bob, via the classical channel, where Bob is able to apply the corresponding unitary operation to obtain photon 3 in the initial state of photon 1. Bob will not have to do anything if he detects the state. Bob will need to apply a phase shift to photon 3 between the horizontal and vertical component if the state is detected. [14]

The results of Zeilinger's group concluded that the average fidelity (overlap of the ideal teleported state with the measured density matrix) was 0.863 with a standard deviation of 0.038. The link attenuation during their experiments varied between 28.1 dB and 39.0 dB, which was a result of strong winds and rapid temperature changes. Despite the high loss in the quantum free-space channel, the average fidelity surpassed the classical limit of 2/3. Therefore, Zeilinger's group successfully demonstrated quantum teleportation over a distance of 143 km. [14]

Quantum teleportation across the Danube River

In 2004, a quantum teleportation experiment was conducted across the Danube River in Vienna, a total of 600 meters. An 800-meter-long optical fiber wire was installed in a public sewer system underneath the Danube River, and it was exposed to temperature changes and other environmental influences. Alice must perform a joint Bell state measurement (BSM) on photon b, the input photon, and photon c, her part of the entangled photon pair (photons c and d). Photon d, Bob's receiver photon, will contain all of the information on the input photon b, except for a phase rotation that depends on the state that Alice observed. This experiment implemented an active feed-forward system that sends Alice's measurement results via a classical microwave channel with a fast electro-optical modulator in order to exactly replicate Alice's input photon. The teleportation fidelity obtained from the linear polarization state at 45° varied between 0.84 and 0.90, which is well above the classical fidelity limit of 0.66. [12]

Deterministic quantum teleportation with atoms

Three qubits are required for this process: the source qubit from the sender, the ancillary qubit, and the receiver's target qubit, which is maximally entangled with the ancillary qubit. For this experiment, ions were used as the qubits. Ions 2 and 3 are prepared in the Bell state . The state of ion 1 is prepared arbitrarily. The quantum states of ions 1 and 2 are measured by illuminating them with light at a specific wavelength. The obtained fidelities for this experiment ranged between 73% and 76%. This is larger than the maximum possible average fidelity of 66.7% that can be obtained using completely classical resources. [34]

Ground-to-satellite quantum teleportation

The quantum state being teleported in this experiment is , where and are unknown complex numbers, represents the horizontal polarization state, and represents the vertical polarization state. The qubit prepared in this state is generated in a laboratory in Ngari, Tibet. The goal was to teleport the quantum information of the qubit to the Micius satellite that was launched on August 16, 2016, at an altitude of around 500 km. When a Bell state measurement is conducted on photons 1 and 2 and the resulting state is , photon 3 carries this desired state. If the Bell state detected is , then a phase shift of is applied to the state to get the desired quantum state. The distance between the ground station and the satellite changes from as little as 500 km to as large as 1,400 km. Because of the changing distance, the channel loss of the uplink varies between 41 dB and 52 dB. The average fidelity obtained from this experiment was 0.80 with a standard deviation of 0.01. Therefore, this experiment successfully established a ground-to-satellite uplink over a distance of 500–1,400 km using quantum teleportation. This is an essential step towards creating a global-scale quantum internet. [6]

Formal presentation

There are a variety of ways in which the teleportation protocol can be written mathematically. Some are very compact but abstract, and some are verbose but straightforward and concrete. The presentation below is of the latter form: verbose, but has the benefit of showing each quantum state simply and directly. Later sections review more compact notations.

The teleportation protocol begins with a quantum state or qubit , in Alice's possession, that she wants to convey to Bob. This qubit can be written generally, in bra–ket notation, as:

The subscript C above is used only to distinguish this state from A and B, below.

Next, the protocol requires that Alice and Bob share a maximally entangled state. This state is fixed in advance, by mutual agreement between Alice and Bob, and can be any one of the four Bell states shown. It does not matter which one.

,
,
.
,

In the following, assume that Alice and Bob share the state Alice obtains one of the particles in the pair, with the other going to Bob. (This is implemented by preparing the particles together and shooting them to Alice and Bob from a common source.) The subscripts A and B in the entangled state refer to Alice's or Bob's particle.

At this point, Alice has two particles (C, the one she wants to teleport, and A, one of the entangled pair), and Bob has one particle, B. In the total system, the state of these three particles is given by

Alice will then make a local measurement in the Bell basis (i.e. the four Bell states) on the two particles in her possession. To make the result of her measurement clear, it is best to write the state of Alice's two qubits as superpositions of the Bell basis. This is done by using the following general identities, which are easily verified:

and

After expanding the expression for , one applies these identities to the qubits with A and C subscripts. In particular,and the other terms follow similarly. Combining similar terms, the total three particle state of A, B and C together becomes the following four-term superposition: [35]

Note that all three particles are still in the same total state since no operations have been performed. Rather, the above is just a change of basis on Alice's part of the system. This change has moved the entanglement from particles A and B to particles C and A. The actual teleportation occurs when Alice measures her two qubits (C and A) in the Bell basis

A simple quantum circuit that maps one of the four Bell states (the EPR pair in the picture) into one of the four two-qubit computational basis states. The circuit consists of a CNOT gate followed by a Hadamard operation. In the outputs, a and b take on values of 0 or 1. Bell State Decoder.jpg
A simple quantum circuit that maps one of the four Bell states (the EPR pair in the picture) into one of the four two-qubit computational basis states. The circuit consists of a CNOT gate followed by a Hadamard operation. In the outputs, a and b take on values of 0 or 1.

Equivalently, the measurement may be done in the computational basis, , by mapping each Bell state uniquely to one of with the quantum circuit in the figure to the right.

The result of Alice's (local) measurement is a collection of two classical bits (00, 01, 10 or 11) related to one of the following four states (with equal probability of 1/4), after the three-particle state has collapsed into one of the states:

Alice's two particles are now entangled to each other, in one of the four Bell states, and the entanglement originally shared between Alice's and Bob's particles is now broken. Bob's particle takes on one of the four superposition states shown above. Note how Bob's qubit is now in a state that resembles the state to be teleported. The four possible states for Bob's qubit are unitary images of the state to be teleported.

The result of Alice's Bell measurement tells her which of the above four states the system is in. She can now send her result to Bob through a classical channel. Two classical bits can communicate which of the four results she obtained. After Bob receives the message from Alice, he will know which of the four states his particle is in. Using this information, he performs a unitary operation on his particle to transform it to the desired state :

to recover the state.

to his qubit.

Teleportation is thus achieved. The above-mentioned three gates correspond to rotations of π radians (180°) about appropriate axes (X, Y and Z) in the Bloch sphere picture of a qubit.

Some remarks:

Certifying quantum teleportation

When implementing the quantum teleportation protocol, different experimental noises may arise affecting the state transference. [36] The usual way to benchmark a particular teleportation procedure is by using the average fidelity: Given an arbitrary teleportation protocol producing output states with probability for an initial state , the average fidelity is defined as: [37]

where the integration is performed over the Haar measure defined by assuming maximal uncertainty over the initial quantum states , and is the Uhlmann-Jozsa fidelity.

The widely known classical threshold is obtained by optimizing the average fidelity over all classical protocols (i.e. when the sender Alice and the receiver Bob can use just a classical channel to communicate with each other). When teleportation involves qubit states, the maximal classical average fidelity is . [38] [39] In this way, a particular protocol with average fidelity is certified as useful if . [6] [12] [14]

However, using the Uhlmann-Jozsa fidelity as the unique distance measure for benchmarking teleportation is not justified, and one may choose different distinguishability measures. [40] For example, there may exist reasons depending on the context in which other measures might be more suitable than fidelity. [41] In this way, the average distance of teleportation is defined as: [42]

being a well-behaved (i.e. satisfying identity of indiscernibles and unitary invariance) distinguishability measure between quantum states. Consequently, different classical thresholds exist, depending on the considered distance measure (classical thresholds for Trace distance, quantum Jensen–Shannon divergence, transmission distance, Bures distance, wootters distance, and quantum Hellinger distance, among others, were obtained in Ref. [42] ). This points out a particular issue when certifying quantum teleportation: Given a teleportation protocol, its certification is not a universal fact in the sense that depends on the distance used. Then, a particular protocol might be certified as useful for a set of distance quantifiers, and non-useful for other distinguishability measures. [42]

Alternative notations

Teleport.png
Quantum teleportation in its diagrammatic form. [43] employing Penrose graphical notation. [44] Formally, such a computation takes place in a dagger compact category. This results in the abstract description of quantum teleportation as employed in categorical quantum mechanics.
Quantum circuit representation for teleportation of a quantum state, as described above. The circuit consumes the
|
Ph
+
> 
{\displaystyle |\Phi ^{+}\rangle }
Bell state and the qubit to teleport as input, and consists of CNOT, Hadamard, two measurements of two qubits, and finally, two gates with classical control: a Pauli X, and a Pauli Z, meaning that if the result from the measurement was
|
1
> 
{\displaystyle |1\rangle }
, then the classically controlled Pauli gate is executed. After the circuit has run to completion, the value of
|
ps
> 
C
{\displaystyle |\psi \rangle _{C}}
will have moved to, or teleported to
|
ps
> 
B
{\displaystyle |\psi \rangle _{B}}
, and
|
ps
> 
C
{\displaystyle |\psi \rangle _{C}}
will have its value set to either
|
0
> 
{\displaystyle |0\rangle }
or
|
1
> 
{\displaystyle |1\rangle }
, depending on the result from the measurement on that qubit.
This circuit can also be used for entanglement swapping, if
|
ps
> 
C
{\displaystyle |\psi \rangle _{C}}
is one of the qubits that make up an entangled state, as described in the text. Quantum teleportation circuit.svg
Quantum circuit representation for teleportation of a quantum state, as described above. The circuit consumes the Bell state and the qubit to teleport as input, and consists of CNOT, Hadamard, two measurements of two qubits, and finally, two gates with classical control: a Pauli X, and a Pauli Z, meaning that if the result from the measurement was , then the classically controlled Pauli gate is executed. After the circuit has run to completion, the value of will have moved to, or teleported to , and will have its value set to either or , depending on the result from the measurement on that qubit.
This circuit can also be used for entanglement swapping, if is one of the qubits that make up an entangled state, as described in the text.

There are a variety of different notations in use that describe the teleportation protocol. One common one is by using the notation of quantum gates.

In the above derivation, the unitary transformation that is the change of basis (from the standard product basis into the Bell basis) can be written using quantum gates. Direct calculation shows that this gate is given by

where H is the one qubit Walsh-Hadamard gate and is the Controlled NOT gate.

Entanglement swapping

Teleportation can be applied not just to pure states, but also mixed states, that can be regarded as the state of a single subsystem of an entangled pair. The so-called entanglement swapping is a simple and illustrative example.

If Alice and Bob share an entangled pair, and Bob teleports his particle to Carol, then Alice's particle is now entangled with Carol's particle. This situation can also be viewed symmetrically as follows:

Alice and Bob share an entangled pair, and Bob and Carol share a different entangled pair. Now let Bob perform a projective measurement on his two particles in the Bell basis and communicate the result to Carol. These actions are precisely the teleportation protocol described above with Bob's first particle, the one entangled with Alice's particle, as the state to be teleported. When Carol finishes the protocol she now has a particle with the teleported state, that is an entangled state with Alice's particle. Thus, although Alice and Carol never interacted with each other, their particles are now entangled.

A detailed diagrammatic derivation of entanglement swapping has been given by Bob Coecke, [47] presented in terms of categorical quantum mechanics.

Algorithm for swapping Bell pairs

An important application of entanglement swapping is distributing Bell states for use in entanglement distributed quantum networks. A technical description of the entanglement swapping protocol is given here for pure Bell states.

  1. Alice and Bob locally prepare known Bell pairs resulting in the initial state:
  2. Alice sends qubit to a third party Carol
  3. Bob sends qubit to Carol
  4. Carol performs a Bell projection between and that by chance (all four Bell states are possible and recognizable) results in the measurement outcome:
  5. In the case of the other three Bell projection outcomes, local corrections given by Pauli operators are made by Alice and or Bob after Carol has communicated the results of the measurement.


  6. Alice and Bob now have a Bell pair between qubits and

Generalizations of the teleportation protocol

The basic teleportation protocol for a qubit described above has been generalized in several directions, in particular regarding the dimension of the system teleported and the number of parties involved (either as sender, controller, or receiver).

d-dimensional systems

A generalization to -level systems (so-called qudits) is straight forward and was already discussed in the original paper by Bennett et al.: [1] the maximally entangled state of two qubits has to be replaced by a maximally entangled state of two qudits and the Bell measurement by a measurement defined by a maximally entangled orthonormal basis. All possible such generalizations were discussed by Werner in 2001. [48]

The generalization to infinite-dimensional so-called continuous-variable systems was proposed by Braunstein and Kimble [49] and led to the first teleportation experiment that worked unconditionally. [50]

Multipartite versions

The use of multipartite entangled states instead of a bipartite maximally entangled state allows for several new features: either the sender can teleport information to several receivers either sending the same state to all of them (which allows to reduce the amount of entanglement needed for the process) [51] or teleporting multipartite states [52] or sending a single state in such a way that the receiving parties need to cooperate to extract the information. [53] A different way of viewing the latter setting is that some of the parties can control whether the others can teleport.

Logic gate teleportation

In general, mixed states ρ may be transported, and a linear transformation ω applied during teleportation, thus allowing data processing of quantum information. This is one of the foundational building blocks of quantum information processing. This is demonstrated below.

General description

A general teleportation scheme can be described as follows. Three quantum systems are involved. System 1 is the (unknown) state ρ to be teleported by Alice. Systems 2 and 3 are in a maximally entangled state ω that are distributed to Alice and Bob, respectively. The total system is then in the state

A successful teleportation process is a LOCC quantum channel Φ that satisfies

where Tr12 is the partial trace operation with respect systems 1 and 2, and denotes the composition of maps. This describes the channel in the Schrödinger picture.

Taking adjoint maps in the Heisenberg picture, the success condition becomes

for all observable O on Bob's system. The tensor factor in is while that of is .

Further details

The proposed channel Φ can be described more explicitly. To begin teleportation, Alice performs a local measurement on the two subsystems (1 and 2) in her possession. Assume the local measurement have effects

If the measurement registers the i-th outcome, the overall state collapses to

The tensor factor in is while that of is . Bob then applies a corresponding local operation Ψi on system 3. On the combined system, this is described by

where Id is the identity map on the composite system .

Therefore, the channel Φ is defined by

Notice Φ satisfies the definition of LOCC. As stated above, the teleportation is said to be successful if, for all observable O on Bob's system, the equality

holds. The left hand side of the equation is:

where Ψi* is the adjoint of Ψi in the Heisenberg picture. Assuming all objects are finite dimensional, this becomes

The success criterion for teleportation has the expression

Local explanation of the phenomenon

A local explanation of quantum teleportation is put forward by David Deutsch and Patrick Hayden, with respect to the many-worlds interpretation of quantum mechanics. Their paper asserts that the two bits that Alice sends Bob contain "locally inaccessible information" resulting in the teleportation of the quantum state. "The ability of quantum information to flow through a classical channel [...], surviving decoherence, is [...] the basis of quantum teleportation." [54]

Recent developments

While quantum teleportation is in an infancy stage, there are many aspects pertaining to teleportation that scientists are working to better understand or improve the process that include:

Higher dimensions

Quantum teleportation can improve the errors associated with fault tolerant quantum computation via an arrangement of logic gates. Experiments by D. Gottesman and I. L. Chuang have determined that a "Clifford hierarchy" [55] gate arrangement which acts to enhance protection against environmental errors. Overall, a higher threshold of error is allowed with the Clifford hierarchy as the sequence of gates requires less resources that are needed for computation. While the more gates that are used in a quantum computer create more noise, the gates arrangement and use of teleportation in logic transfer can reduce this noise as it calls for less "traffic" that is compiled in these quantum networks. [56] The more qubits used for a quantum computer, the more levels are added to a gate arrangement, with the diagonalization of gate arrangement varying in degree. Higher dimension analysis involves the higher level gate arrangement of the Clifford hierarchy. [57]

Information quality

Considering the previously mentioned requirement of an intermediate entangled state for quantum teleportation, there needs to be consideration placed on to the purity of this state for information quality. A protection that has been developed involves the use of continuous variable information (rather than a typical discrete variable) creating a superimposed coherent intermediate state. This involves making a phase shift in the received information and then adding a mixing step upon reception using a preferred state, which could be an odd or even coherent state, that will be "conditioned to the classical information of the sender" creating a two mode state that contains the originally sent information. [58]

There have also been developments with teleporting information between systems that already have quantum information in them. Experiments done by Feng, Xu, Zhou et al. have demonstrated that teleportation of a qubit to a photon that already has a qubit worth of information is possible due to using an optical qubit-ququart entangling gate. [4] This quality can increase computation possibilities as calculations can be done based on previously stored information allowing for improvements on past calculations.

See also

Related Research Articles

In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:

  1. when the preparation of the systems lead to numerous pure states in the ensemble, and thus one must deal with the statistics of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment. In this case, the density matrix of an entangled system differs from that of an ensemble of pure states that, combined, would give the same statistical results upon measurement.

In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.

<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

In quantum information science, the Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particles being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will "collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell's state the two qubits are in initially. Bell's states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for three or more subsystems.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the general dynamics of a qubit. An example of classical information is a text document transmitted over the Internet.

<span class="mw-page-title-main">LOCC</span> Method in quantum computation and communication

LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.

<span class="mw-page-title-main">Greenberger–Horne–Zeilinger state</span> "Highly entangled" quantum state of 3 or more qubits

In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger (GHZ) state is a certain type of entangled quantum state that involves at least three subsystems. The four-particle version was first studied by Daniel Greenberger, Michael Horne and Anton Zeilinger in 1989, and the three-particle version was introduced by N. David Mermin in 1990. Extremely non-classical properties of the state have been observed, contradicting intuitive notions of locality and causality. GHZ states for large numbers of qubits are theorized to give enhanced performance for metrology compared to other qubit superposition states.

The W state is an entangled quantum state of three qubits which in the bra-ket notation has the following shape

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

In the case of systems composed of subsystems, the classification of quantum-entangledstates is richer than in the bipartite case. Indeed, in multipartite entanglement apart from fully separable states and fully entangled states, there also exists the notion of partially separable states.

A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

<span class="mw-page-title-main">Quantum complex network</span> Notion in network science of quantum information networks

Quantum complex networks are complex networks whose nodes are quantum computing devices. Quantum mechanics has been used to create secure quantum communications channels that are protected from hacking. Quantum communications offer the potential for secure enterprise-scale solutions.

Optical cluster states are a proposed tool to achieve quantum computational universality in linear optical quantum computing (LOQC). As direct entangling operations with photons often require nonlinear effects, probabilistic generation of entangled resource states has been proposed as an alternative path to the direct approach.

In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.

In quantum physics, the "monogamy" of quantum entanglement refers to the fundamental property that it cannot be freely shared between arbitrarily many parties.

Bell diagonal states are a class of bipartite qubit states that are frequently used in quantum information and quantum computation theory.

References

Specific

  1. 1 2 Bennett, Charles H.; Brassard, Gilles; Crépeau, Claude; Jozsa, Richard; Peres, Asher; Wootters, William K. (29 March 1993). "Teleporting an Unknown Quantum State via Dual Classical and Einstein–Podolsky–Rosen Channels". Physical Review Letters . 70 (13): 1895–1899. Bibcode:1993PhRvL..70.1895B. CiteSeerX   10.1.1.46.9405 . doi: 10.1103/PhysRevLett.70.1895 . PMID   10053414.
  2. 1 2 3 Boschi, D.; Branca, S.; De Martini, F.; Hardy, L.; Popescu, S. (9 February 1998). "Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels". Physical Review Letters . 80 (6): 1121–1125. arXiv: quant-ph/9710013 . Bibcode:1998PhRvL..80.1121B. doi:10.1103/PhysRevLett.80.1121. S2CID   15020942.
  3. 1 2 3 Bouwmeester, Dik; Pan, Jian-Wei; Mattle, Klaus; Eibl, Manfred; Weinfurter, Harald; Zeilinger, Anton (1 December 1997). "Experimental quantum teleportation". Nature. 390 (6660): 575–579. arXiv: 1901.11004 . Bibcode:1997Natur.390..575B. doi:10.1038/37539. S2CID   4422887.
  4. 1 2 Tianfeng Feng; Qiao Xu; Linxiang Zhou; Maolin Luo; Wuhong Zhang; Xiaoqi Zhou (2022). "Quantum information transfer between a two-level and a four-level quantum systems". Photonics Research. 10 (12): 2854. arXiv: 2009.09421 . doi:10.1364/PRJ.461283. S2CID   247011044.
  5. Chang, Kenneth (17 June 2004). "Scientists Teleport not Kirk but an Atom". New York Times.
  6. 1 2 3 Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei (7 September 2017). "Ground-to-satellite quantum teleportation". Nature. 549 (7670): 70–73. arXiv: 1707.00934 . Bibcode:2017Natur.549...70R. doi:10.1038/nature23675. PMID   28825708. S2CID   4468803.
  7. Migdał, Piotr; Jankiewicz, Klementyna; Grabarz, Paweł; Decaroli, Chiara; Cochin, Philippe (2022). "Visualizing quantum mechanics in an interactive simulation - Virtual Lab by Quantum Flytrap". Optical Engineering. 61 (8): 081808. arXiv: 2203.13300 . Bibcode:2022OptEn..61h1808M. doi:10.1117/1.OE.61.8.081808.
  8. Barrett, M. D.; Chiaverini, J.; Schaetz, T.; Britton, J.; Itano, W. M.; Jost, J. D.; Knill, E.; Langer, C.; Leibfried, D.; Ozeri, R.; Wineland, D. J. (2004). "Deterministic quantum teleportation of atomic qubits". Nature. 429 (6993): 737–739. Bibcode:2004Natur.429..737B. doi:10.1038/nature02608. PMID   15201904. S2CID   1608775.
  9. Pirandola, S.; Eisert, J.; Weedbrook, C.; Furusawa, A.; Braunstein, S. L. (2015). "Advances in quantum teleportation". Nature Photonics. 9 (10): 641–652. arXiv: 1505.07831 . Bibcode:2015NaPho...9..641P. doi:10.1038/nphoton.2015.154. S2CID   15074330.
  10. Lo Franco, Rosario; Compagno, Giuseppe (2018). "Indistinguishability of Elementary Systems as a Resource for Quantum Information Processing". Physical Review Letters. 120 (24): 240403. arXiv: 1712.00706 . Bibcode:2018PhRvL.120x0403L. doi:10.1103/PhysRevLett.120.240403. PMID   29957003. S2CID   49562954.
  11. Sun, K.; Wang, Y.; Liu, Z.-H.; Xu, X.-Y.; Xu, J.-S.; Li, C.-F.; Guo, G.-C.; Castellini, A.; Nosrati, F.; Compagno, G.; Lo Franco, R. (2020). "Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons". Optics Letters. 45 (23): 6410–6413. arXiv: 2003.10659 . Bibcode:2020OptL...45.6410S. doi:10.1364/OL.401735. hdl:10447/449875. PMID   33258824. S2CID   227245593.
  12. 1 2 3 Ursin, Rupert; Jennewein, Thomas; Aspelmeyer, Markus; Kaltenbaek, Rainer; Lindenthal, Michael; Walther, Philip; Zeilinger, Anton (18 August 2004). "Quantum teleportation across the Danube". Nature. 430 (7002): 849. Bibcode:2004Natur.430..849U. doi: 10.1038/430849a . PMID   15318210. S2CID   4426035.
  13. Jin, Xian-Min; Ren, Ji-Gang; Yang, Bin; Yi, Zhen-Huan; Zhou, Fei; Xu, Xiao-Fan; Wang, Shao-Kai; Yang, Dong; Hu, Yuan-Feng; Jiang, Shuo; Yang, Tao; Yin, Hao; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei (16 May 2010). "Experimental free-space quantum teleportation". Nature Photonics. 4 (6): 376. Bibcode:2010NaPho...4..376J. doi:10.1038/nphoton.2010.87.
  14. 1 2 3 4 5 6 Ma, Xiao-Song; Herbst, Thomas; Scheidl, Thomas; Wang, Daqing; Kropatschek, Sebastian; Naylor, William; Wittmann, Bernhard; Mech, Alexandra; Kofler, Johannes; Anisimova, Elena; Makarov, Vadim; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton (5 September 2012). "Quantum teleportation over 143 kilometres using active feed-forward". Nature. 489 (7415): 269–273. arXiv: 1205.3909 . Bibcode:2012Natur.489..269M. doi:10.1038/nature11472. PMID   22951967. S2CID   209109.
  15. Takesue, Hiroki; Dyer, Shellee D.; Stevens, Martin J.; Verma, Varun; Mirin, Richard P.; Sae Woo Nam (20 October 2015). "Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors". Optica. 2 (10): 832–835. arXiv: 1510.00476 . Bibcode:2015Optic...2..832T. doi:10.1364/OPTICA.2.000832. S2CID   55109707.
  16. Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan (2013). "Efficient Teleportation between Remote Single-Atom Quantum Memories". Physical Review Letters. 110 (14): 140403. arXiv: 1212.3127 . Bibcode:2013PhRvL.110n0403N. doi:10.1103/PhysRevLett.110.140403. PMID   25166964. S2CID   6597459.
  17. Zhao, Zhi; Chen, Yu-Ao; Zhang, An-Ning; Yang, Tao; Briegel, Hans J.; Pan, Jian-Wei (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". Nature. 430 (6995): 54–58. arXiv: quant-ph/0402096 . Bibcode:2004Natur.430...54Z. doi:10.1038/nature02643. PMID   15229594. S2CID   4336020.
  18. Zhang, Qiang; Goebel, Alexander; Wagenknecht, Claudia; Chen, Yu-Ao; Zhao, Bo; Yang, Tao; Mair, Alois; Schmiedmayer, Jörg; Pan, Jian-Wei (2006). "Experimental quantum teleportation of a two-qubit composite system". Nature Physics. 2 (10): 678–682. arXiv: quant-ph/0609129 . Bibcode:2006NatPh...2..678Z. doi:10.1038/nphys417. S2CID   18201599.
  19. Lee, Noriyuki; Hugo Benichi; Yuishi Takeno; Shuntaro Takeda; James Webb; Elanor Huntington; Akira Furusawa (April 2011). "Teleportation of Nonclassical Wave Packets of Light". Science. 332 (6027): 330–333. arXiv: 1205.6253 . Bibcode:2011Sci...332..330L. CiteSeerX   10.1.1.759.1059 . doi:10.1126/science.1201034. PMID   21493853. S2CID   206531447.
  20. Trute, Peter. "Quantum teleporter breakthrough". The University Of New South Wales. Archived from the original on 2011-04-18. Retrieved 2011-04-17.
  21. Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; van Loock, Peter; Furusawa, Akira (14 August 2013). "Deterministic quantum teleportation of photonic quantum bits by a hybrid technique". Nature. 500 (7462): 315–318. arXiv: 1402.4895 . Bibcode:2013Natur.500..315T. doi:10.1038/nature12366. PMID   23955230. S2CID   4344887.
  22. Markoff, John (29 May 2014). "Scientists Report Finding Reliable Way to Teleport Data". The New York Times . Retrieved 2014-05-29.
  23. Pfaff W, Hensen BJ, Bernien H, van Dam SB, Blok MS, Taminiau TH, Tiggelman MJ, Schouten RN, Markham M, Twitchen DJ, Hanson R (29 May 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science. 345 (6196): 532–535. arXiv: 1404.4369 . Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. PMID   25082696. S2CID   2190249.
  24. Commissariat, Tushna (27 February 2015). "Two quantum properties teleported together for first time". PhysicsWorld.com.
  25. Xi-Lin Wang; Xin-Dong Cai; Zu-En Su; Ming-Cheng Chen; Dian Wu; Li Li; Nai-Le Liu; Chao-Yang Lu; Jian-Wei Pan (26 February 2015). "Quantum teleportation of multiple degrees of freedom of a single photon". Nature. 518 (7540): 516–519. Bibcode:2015Natur.518..516W. doi:10.1038/nature14246. PMID   25719668. S2CID   4448594.
  26. Xia, Xiu-Xiu; Qi-Chao Sun; Qiang Zhang; Jian-Wei Pan (2018). "Long distance quantum teleportation". Quantum Science and Technology. 3 (1). 014012. Bibcode:2018QS&T....3a4012X. doi:10.1088/2058-9565/aa9baf. S2CID   125240574.
  27. Sun, Qi-Chao; Mao, Ya-Li; Chen, Sijing; Zhang, Wei; Jiang, Yang-Fan; Zhang, Yanbao; Zhang, Weijun; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Jiang, Xiao; Chen, Teng-Yun; You, Lixing; Chen, Xianfeng; Wang, Zhen; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei (19 September 2016). "Quantum teleportation with independent sources and prior entanglement distribution over a network". Nature Photonics. 10 (10): 671–675. arXiv: 1602.07081 . Bibcode:2016NaPho..10..671S. doi:10.1038/nphoton.2016.179. ISSN   1749-4893. S2CID   126228648.
  28. Valivarthi, Raju; Puigibert, Marcel.li Grimau; Zhou, Qiang; Aguilar, Gabriel H.; Verma, Varun B.; Marsili, Francesco; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel (19 September 2016). "Quantum teleportation across a metropolitan fibre network". Nature Photonics. 10 (10): 676–680. arXiv: 1605.08814 . Bibcode:2016NaPho..10..676V. doi:10.1038/nphoton.2016.180. ISSN   1749-4885. S2CID   119163338.
  29. Valivarthi, Raju; Davis, Samantha I.; Peña, Cristián; Xie, Si; Lauk, Nikolai; Narváez, Lautaro; Allmaras, Jason P.; Beyer, Andrew D.; Gim, Yewon; Hussein, Meraj; Iskander, George (4 December 2020). "Teleportation Systems Toward a Quantum Internet". PRX Quantum. 1 (2): 020317. arXiv: 2007.11157 . Bibcode:2020PRXQ....1b0317V. doi:10.1103/PRXQuantum.1.020317. ISSN   2691-3399. S2CID   220686903.
  30. Tangermann, Victor (18 December 2020). "Researchers Achieve First "Sustained" Long Distance Quantum Teleportation". Futurism. Retrieved 2021-06-06.
  31. University of Copenhagen (13 June 2013). "Quantum teleportation between atomic systems over long distances". Phys.Org.
  32. Krauter, H.; Salart, D.; Muschik, C. A.; Petersen, J. M.; Shen, Heng; Fernholz, T.; Polzik, E. S. (2 June 2013). "Deterministic quantum teleportation between distant atomic objects". Nature Physics. 9 (7): 400. arXiv: 1212.6746 . Bibcode:2013NatPh...9..400K. doi:10.1038/nphys2631. S2CID   118724313.
  33. Chou, Kevin S.; Blumoff, Jacob Z.; Wang, Christopher S.; Reinhold, Philip C.; Axline, Christopher J.; Gao, Yvonne Y.; Frunzio, L.; Devoret, M. H.; Jiang, Liang; Schoelkopf, R. J. (2018). "Deterministic teleportation of a quantum gate between two logical qubits". Nature. 561 (7723): 368–373. arXiv: 1801.05283 . Bibcode:2018Natur.561..368C. doi:10.1038/s41586-018-0470-y. PMID   30185908. S2CID   3820071.
  34. Riebe, M.; Häffner, H.; Roos, C. F.; Hänsel, W.; Benhelm, J.; Lancaster, G. P. T.; Körber, T. W.; Becher, C.; Schmidt-Kaler, F.; James, D. F. V.; Blatt, R. (June 2004). "Deterministic quantum teleportation with atoms". Nature. 429 (6993): 734–737. Bibcode:2004Natur.429..734R. doi:10.1038/nature02570. PMID   15201903. S2CID   4397716.
  35. Nielsen, Michael A.; Chuang, Isaac (2010). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. pp. 26–27. ISBN   978-1-10700-217-3. OCLC   43641333.
  36. Knoll, Laura T.; Schmiegelow, Christian T.; Larotonda, Miguel A. (28 October 2014). "Noisy quantum teleportation: An experimental study on the influence of local environments". Physical Review A. 90 (4): 042332. arXiv: 1410.5771 . Bibcode:2014PhRvA..90d2332K. doi:10.1103/PhysRevA.90.042332. hdl:11336/29814.
  37. Pirandola, S.; Eisert, J.; Weedbrook, C.; Furusawa, A.; Braunstein, S. L. (October 2015). "Advances in quantum teleportation". Nature Photonics. 9 (10): 641–652. arXiv: 1505.07831 . Bibcode:2015NaPho...9..641P. doi:10.1038/nphoton.2015.154. ISSN   1749-4893.
  38. Massar, S.; Popescu, S. (20 February 1995). "Optimal Extraction of Information from Finite Quantum Ensembles". Physical Review Letters. 74 (8): 1259–1263. Bibcode:1995PhRvL..74.1259M. doi:10.1103/PhysRevLett.74.1259. PMID   10058975.
  39. Vidal, G.; Latorre, J. I.; Pascual, P.; Tarrach, R. (1 July 1999). "Optimal minimal measurements of mixed states". Physical Review A. 60 (1): 126–135. arXiv: quant-ph/9812068 . Bibcode:1999PhRvA..60..126V. doi:10.1103/physreva.60.126. ISSN   1050-2947.
  40. Popescu, Sandu (7 February 1994). "Bell's inequalities versus teleportation: What is nonlocality?". Physical Review Letters. 72 (6): 797–799. Bibcode:1994PhRvL..72..797P. doi:10.1103/PhysRevLett.72.797. PMID   10056537.
  41. Ribeiro, G. A. P.; Rigolin, Gustavo (14 June 2024). "Finite-temperature detection of quantum critical points: A comparative study". Physical Review B. 109 (24): 245122. arXiv: 2406.10178 . Bibcode:2024PhRvB.109x5122R. doi:10.1103/PhysRevB.109.245122.
  42. 1 2 3 Bussandri, D. G.; Bosyk, G. M.; Toscano, F. (22 March 2024). "Challenges in certifying quantum teleportation: Moving beyond the conventional fidelity benchmark". Physical Review A. 109 (3): 032618. arXiv: 2403.07994 . Bibcode:2024PhRvA.109c2618B. doi:10.1103/PhysRevA.109.032618.
  43. Coecke, Bob (2009). "Quantum Picturalism". Contemporary Physics. 51 (2010): 59–83. arXiv: 0908.1787 . Bibcode:2010ConPh..51...59C. doi:10.1080/00107510903257624. S2CID   752173.
  44. R. Penrose, Applications of negative dimensional tensors, In: Combinatorial Mathematics and its Applications, D.~Welsh (Ed), pages 221–244. Academic Press (1971).
  45. Williams, Colin P. (2010). Explorations in Quantum Computing. Springer. pp. 496–499. ISBN   978-1-4471-6801-0.
  46. Nielsen, Michael A.; Chuang, Isaac (2010). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. pp. 26–28. ISBN   978-1-10700-217-3. OCLC   43641333.
  47. Coecke, Bob (2004). The logic of entanglement (Preprint). arXiv: quant-ph/0402014 .
  48. Werner, Reinhard F. (2001). "All teleportation and dense coding schemes". J. Phys. A: Math. Gen. 34 (35): 7081–7094. arXiv: quant-ph/0003070 . Bibcode:2001JPhA...34.7081W. doi:10.1088/0305-4470/34/35/332. S2CID   9684671.
  49. Braunstein, Samuel L.; Kimble, H. J. (26 January 1998). "Teleportation of Continuous Quantum Variables". Physical Review Letters. 80 (4): 869–872. Bibcode:1998PhRvL..80..869B. doi:10.1103/PhysRevLett.80.869.
  50. Furusawa, A.; Sørensen, J. L.; Braunstein, S. L.; Fuchs, C. A.; Kimble, H. J.; Polzik, E. S. (1998). "Unconditional Quantum Teleportation". Science. 282 (5389): 706–709. Bibcode:1998Sci...282..706F. doi:10.1126/science.282.5389.706. PMID   9784123. S2CID   14269209.
  51. Dür, W. and Cirac, J. I. (2000). "Multiparty teleportation". J. Mod. Opt. 47 (2–3): 247–255. Bibcode:2000JMOp...47..247D. doi:10.1080/09500340008244039. S2CID   216116503.
  52. Yeo, Ye; Chua, Wee Kang (2006). "Teleportation and Dense Coding with Genuine Multipartite Entanglement". Phys. Rev. Lett. 96 (6): 060502. arXiv: quant-ph/0510029 . Bibcode:2006PhRvL..96f0502Y. doi:10.1103/PhysRevLett.96.060502. PMID   16605974. S2CID   5170837.
  53. Karlsson, Anders; Bourennane, Mohamed (1998). "Quantum teleportation using three-particle entanglement". Phys. Rev. A. 58 (6): 4394–4400. Bibcode:1998PhRvA..58.4394K. doi:10.1103/PhysRevA.58.4394.
  54. Deutsch, David; Hayden, Patrick (1999). "Information Flow in Entangled Quantum Systems". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 456 (1999): 1759–1774. arXiv: quant-ph/9906007 . Bibcode:2000RSPSA.456.1759D. doi:10.1098/rspa.2000.0585. S2CID   13998168.
  55. Gottesman, Daniel; Chuang, Isaac L. (November 1999). "Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations". Nature. 402 (6760): 390–393. arXiv: quant-ph/9908010 . Bibcode:1999Natur.402..390G. doi:10.1038/46503. ISSN   0028-0836. S2CID   4411647.
  56. Luo, Yi-Han; Chen, Ming-cheng; Erhard, Manuel; Zhong, Han-Sen; Wu, Dian; Tang, Hao-Yang; Zhao, Qi; Wang, Xi-Lin; Fujii, Keisuke; Li, Li; Liu, Nai-Le; Nemoto, Kae; Munro, William; Lu, Chao-Yang; Zeilinger, Anton; Pan, Jian-Wei (7 September 2020). "Quantum teleportation of physical qubits into logical code-spaces". PNAS. 118 (36). e2026250118. arXiv: 2009.06242 . doi: 10.1073/pnas.2026250118 . PMC   8433538 . PMID   34479998.
  57. de Silva, Nadish (2021). "Efficient quantum gate teleportation in higher dimensions". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 477 (2251). arXiv: 2011.00127 . Bibcode:2021RSPSA.47700865D. doi:10.1098/rspa.2020.0865. S2CID   226227346.
  58. Pandey, Ravi; Prakash, Ranjana; Prakash, Hari (27 September 2021). "High success standard quantum teleportation using entangled coherent state and two-level atoms in cavities". Quantum Inf Process. 20 (10). 322. arXiv: 2010.06829 . Bibcode:2021QuIP...20..322P. doi:10.1007/s11128-021-03264-0. S2CID   222341312.

General