Part of a series of articles about |
Quantum mechanics |
---|
In physics, a hidden-variable theory is a deterministic physical model which seeks to explain the probabilistic nature of quantum mechanics by introducing additional (possibly inaccessible) variables.
Indeterminacy of the state of a system previous to measurement is assumed to be a part of the mathematical formulation of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle. Most hidden-variable theories are attempts to avoid this indeterminacy, but possibly at the expense of requiring that nonlocal interactions be allowed. One notable hidden-variable theory is the de Broglie–Bohm theory.
In 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen in their EPR paper argued that quantum entanglement might indicate quantum mechanics is an incomplete description of reality. [1] [2] John Stewart Bell in 1964, in his eponymous theorem proved that correlations between particles under any local hidden variable theory must obey certain constraints. Subsequently, Bell test experiments have demonstrated broad violation of these constraints, ruling out such theories. [3] Bell's theorem, however, does not rule out the possibility of nonlocal theories or superdeterminism; these therefore cannot be falsified by Bell tests.
Macroscopic physics requires classical mechanics which allows accurate predictions of mechanical motion with reproducible, high precision. Quantum phenomena require quantum mechanics, which allows accurate predictions of statistical averages only. If quantum states had hidden-variables awaiting ingenious new measurement technologies, then the latter (statistical results) might be convertible to a form of the former (classical-mechanical motion). [4]
Such a classical mechanics would eliminate unsettling characteristics of quantum theory like the uncertainty principle. More fundamentally however, a successful model of quantum phenomena with hidden variables implies quantum entities with intrinsic values independent of measurements. Existing quantum mechanics asserts that state properties can only be known after a measurement. As N. David Mermin puts it:
"It is a fundamental quantum doctrine that a measurement does not, in general, reveal a pre-existing value of the measured property. On the contrary, the outcome of a measurement is brought into being by the act of measurement itself..." [5]
In other words, whereas a hidden-variable theory would imply intrinsic particle properties, in quantum mechanics an electron has no definite position and velocity to even be revealed.
In June 1926, Max Born published a paper, [6] in which he was the first to clearly enunciate the probabilistic interpretation of the quantum wave function, which had been introduced by Erwin Schrödinger earlier in the year. Born concluded the paper as follows:
Here the whole problem of determinism comes up. From the standpoint of our quantum mechanics there is no quantity which in any individual case causally fixes the consequence of the collision; but also experimentally we have so far no reason to believe that there are some inner properties of the atom which conditions a definite outcome for the collision. Ought we to hope later to discover such properties ... and determine them in individual cases? Or ought we to believe that the agreement of theory and experiment—as to the impossibility of prescribing conditions for a causal evolution—is a pre-established harmony founded on the nonexistence of such conditions? I myself am inclined to give up determinism in the world of atoms. But that is a philosophical question for which physical arguments alone are not decisive.
Born's interpretation of the wave function was criticized by Schrödinger, who had previously attempted to interpret it in real physical terms, but Albert Einstein's response became one of the earliest and most famous assertions that quantum mechanics is incomplete:
Quantum mechanics is very worthy of respect. But an inner voice tells me this is not the genuine article after all. The theory delivers much but it hardly brings us closer to the Old One's secret. In any event, I am convinced that He is not playing dice. [7] [8]
Niels Bohr reportedly replied to Einstein's later expression of this sentiment by advising him to "stop telling God what to do." [9]
Shortly after making his famous "God does not play dice" comment, Einstein attempted to formulate a deterministic counter proposal to quantum mechanics, presenting a paper at a meeting of the Academy of Sciences in Berlin, on 5 May 1927, titled "Bestimmt Schrödinger's Wellenmechanik die Bewegung eines Systems vollständig oder nur im Sinne der Statistik?" ("Does Schrödinger's wave mechanics determine the motion of a system completely or only in the statistical sense?"). [10] [11] However, as the paper was being prepared for publication in the academy's journal, Einstein decided to withdraw it, possibly because he discovered that, contrary to his intention, his use of Schrödinger's field to guide localized particles allowed just the kind of non-local influences he intended to avoid. [12]
At the Fifth Solvay Congress, held in Belgium in October 1927 and attended by all the major theoretical physicists of the era, Louis de Broglie presented his own version of a deterministic hidden-variable theory, apparently unaware of Einstein's aborted attempt earlier in the year. In his theory, every particle had an associated, hidden "pilot wave" which served to guide its trajectory through space. The theory was subject to criticism at the Congress, particularly by Wolfgang Pauli, which de Broglie did not adequately answer; de Broglie abandoned the theory shortly thereafter.
Also at the Fifth Solvay Congress, Max Born and Werner Heisenberg made a presentation summarizing the recent tremendous theoretical development of quantum mechanics. At the conclusion of the presentation, they declared:
[W]hile we consider ... a quantum mechanical treatment of the electromagnetic field ... as not yet finished, we consider quantum mechanics to be a closed theory, whose fundamental physical and mathematical assumptions are no longer susceptible of any modification.... On the question of the 'validity of the law of causality' we have this opinion: as long as one takes into account only experiments that lie in the domain of our currently acquired physical and quantum mechanical experience, the assumption of indeterminism in principle, here taken as fundamental, agrees with experience. [13]
Although there is no record of Einstein responding to Born and Heisenberg during the technical sessions of the Fifth Solvay Congress, he did challenge the completeness of quantum mechanics at various times. In his tribute article for Born's retirement he discussed the quantum representation of a macroscopic ball bouncing elastically between rigid barriers. He argues that such a quantum representation does not represent a specific ball, but "time ensemble of systems". As such the representation is correct, but incomplete because it does not represent the real individual macroscopic case. [14] Einstein considered quantum mechanics incomplete "because the state function, in general, does not even describe the individual event/system". [15]
John von Neumann in his 1932 book Mathematical Foundations of Quantum Mechanics had presented a proof that there could be no "hidden parameters" in quantum mechanics. The validity of von Neumann's proof was questioned by Grete Hermann in 1935, who found a flaw in the proof. The critical issue concerned averages over ensembles. Von Neumann assumed that a relation between the expected values of different observable quantities holds for each possible value of the "hidden parameters", rather than only for a statistical average over them. [16] [17] However Hermann's work went mostly unnoticed until its rediscovery by John Stewart Bell more than 30 years later. [18] [19]
The validity and definitiveness of von Neumann's proof were also questioned by Hans Reichenbach, and possibly in conversation though not in print by Albert Einstein. Reportedly, in a conversation circa 1938 with his assistants Peter Bergmann and Valentine Bargmann, Einstein pulled von Neumann's book off his shelf, pointed to the same assumption critiqued by Hermann and Bell, and asked why one should believe in it. [20] [21] Simon Kochen and Ernst Specker rejected von Neumann's key assumption as early as 1961, but did not publish a criticism of it until 1967. [22]
Einstein argued that quantum mechanics could not be a complete theory of physical reality. He wrote,
Consider a mechanical system consisting of two partial systems A and B which interact with each other only during a limited time. Let the ψ function [i.e., wavefunction] before their interaction be given. Then the Schrödinger equation will furnish the ψ function after the interaction has taken place. Let us now determine the physical state of the partial system A as completely as possible by measurements. Then quantum mechanics allows us to determine the ψ function of the partial system B from the measurements made, and from the ψ function of the total system. This determination, however, gives a result which depends upon which of the physical quantities (observables) of A have been measured (for instance, coordinates or momenta). Since there can be only one physical state of B after the interaction which cannot reasonably be considered to depend on the particular measurement we perform on the system A separated from B it may be concluded that the ψ function is not unambiguously coordinated to the physical state. This coordination of several ψ functions to the same physical state of system B shows again that the ψ function cannot be interpreted as a (complete) description of a physical state of a single system. [23]
Together with Boris Podolsky and Nathan Rosen, Einstein published a paper that gave a related but distinct argument against the completeness of quantum mechanics. [24] They proposed a thought experiment involving a pair of particles prepared in what would later become known as an entangled state. Einstein, Podolsky, and Rosen pointed out that, in this state, if the position of the first particle were measured, the result of measuring the position of the second particle could be predicted. If instead the momentum of the first particle were measured, then the result of measuring the momentum of the second particle could be predicted. They argued that no action taken on the first particle could instantaneously affect the other, since this would involve information being transmitted faster than light, which is impossible according to the theory of relativity. They invoked a principle, later known as the "EPR criterion of reality", positing that: "If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of reality corresponding to that quantity." From this, they inferred that the second particle must have a definite value of both position and of momentum prior to either quantity being measured. But quantum mechanics considers these two observables incompatible and thus does not associate simultaneous values for both to any system. Einstein, Podolsky, and Rosen therefore concluded that quantum theory does not provide a complete description of reality. [25]
Bohr answered the Einstein–Podolsky–Rosen challenge as follows:
[The argument of] Einstein, Podolsky and Rosen contains an ambiguity as regards the meaning of the expression "without in any way disturbing a system." ... [E]ven at this stage [i.e., the measurement of, for example, a particle that is part of an entangled pair], there is essentially the question of an influence on the very conditions which define the possible types of predictions regarding the future behavior of the system. Since these conditions constitute an inherent element of the description of any phenomenon to which the term "physical reality" can be properly attached, we see that the argumentation of the mentioned authors does not justify their conclusion that quantum-mechanical description is essentially incomplete." [26]
Bohr is here choosing to define a "physical reality" as limited to a phenomenon that is immediately observable by an arbitrarily chosen and explicitly specified technique, using his own special definition of the term 'phenomenon'. He wrote in 1948:
As a more appropriate way of expression, one may strongly advocate limitation of the use of the word phenomenon to refer exclusively to observations obtained under specified circumstances, including an account of the whole experiment. [27] [28]
This was, of course, in conflict with the EPR criterion of reality.
In 1964, John Stewart Bell showed through his famous theorem that if local hidden variables exist, certain experiments could be performed involving quantum entanglement where the result would satisfy a Bell inequality. If, on the other hand, statistical correlations resulting from quantum entanglement could not be explained by local hidden variables, the Bell inequality would be violated. Another no-go theorem concerning hidden-variable theories is the Kochen–Specker theorem.
Physicists such as Alain Aspect and Paul Kwiat have performed experiments that have found violations of these inequalities up to 242 standard deviations. [29] This rules out local hidden-variable theories, but does not rule out non-local ones. Theoretically, there could be experimental problems that affect the validity of the experimental findings.
Gerard 't Hooft has disputed the validity of Bell's theorem on the basis of the superdeterminism loophole and proposed some ideas to construct local deterministic models. [30] [31]
In 1952, David Bohm proposed a hidden variable theory. Bohm unknowingly rediscovered (and extended) the idea that Louis de Broglie's pilot wave theory had proposed in 1927 (and abandoned) – hence this theory is commonly called "de Broglie-Bohm theory". Assuming the validity of Bell's theorem, any deterministic hidden-variable theory that is consistent with quantum mechanics would have to be non-local, maintaining the existence of instantaneous or faster-than-light relations (correlations) between physically separated entities.
Bohm posited both the quantum particle, e.g. an electron, and a hidden 'guiding wave' that governs its motion. Thus, in this theory electrons are quite clearly particles. When a double-slit experiment is performed, the electron goes through either one of the slits. Also, the slit passed through is not random but is governed by the (hidden) pilot wave, resulting in the wave pattern that is observed.
In Bohm's interpretation, the (non-local) quantum potential constitutes an implicate (hidden) order which organizes a particle, and which may itself be the result of yet a further implicate order: a superimplicate order which organizes a field. [32] Nowadays Bohm's theory is considered to be one of many interpretations of quantum mechanics. Some consider it the simplest theory to explain quantum phenomena. [33] Nevertheless, it is a hidden-variable theory, and necessarily so. [34] The major reference for Bohm's theory today is his book with Basil Hiley, published posthumously. [35]
A possible weakness of Bohm's theory is that some (including Einstein, Pauli, and Heisenberg) feel that it looks contrived. [36] (Indeed, Bohm thought this of his original formulation of the theory. [37] ) Bohm said he considered his theory to be unacceptable as a physical theory due to the guiding wave's existence in an abstract multi-dimensional configuration space, rather than three-dimensional space. [37]
In August 2011, Roger Colbeck and Renato Renner published a proof that any extension of quantum mechanical theory, whether using hidden variables or otherwise, cannot provide a more accurate prediction of outcomes, assuming that observers can freely choose the measurement settings. [38] Colbeck and Renner write: "In the present work, we have ... excluded the possibility that any extension of quantum theory (not necessarily in the form of local hidden variables) can help predict the outcomes of any measurement on any quantum state. In this sense, we show the following: under the assumption that measurement settings can be chosen freely, quantum theory really is complete".
In January 2013, Giancarlo Ghirardi and Raffaele Romano described a model which, "under a different free choice assumption [...] violates [the statement by Colbeck and Renner] for almost all states of a bipartite two-level system, in a possibly experimentally testable way". [39]
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. While "Copenhagen" refers to the Danish city, the use as an "interpretation" was apparently coined by Heisenberg during the 1950s to refer to ideas developed in the 1925–1927 period, glossing over his disagreements with Bohr. Consequently, there is no definitive historical statement of what the interpretation entails.
The Einstein–Podolsky–Rosen (EPR) paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen which argues that the description of physical reality provided by quantum mechanics is incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing these hidden variables. Resolutions of the paradox have important implications for the interpretation of quantum mechanics.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.
Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.
The de Broglie–Bohm theory is an interpretation of quantum mechanics which postulates that, in addition to the wavefunction, an actual configuration of particles exists, even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).
Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are supposed properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."
In quantum mechanics, wave function collapse, also called reduction of the state vector, occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation.
In philosophy, the philosophy of physics deals with conceptual and interpretational issues in physics, many of which overlap with research done by certain kinds of theoretical physicists. Historically, philosophers of physics have engaged with questions such as the nature of space, time, matter and the laws that govern their interactions, as well as the epistemological and ontological basis of the theories used by practicing physicists. The discipline draws upon insights from various areas of philosophy, including metaphysics, epistemology, and philosophy of science, while also engaging with the latest developments in theoretical and experimental physics.
John Stewart Bell FRS was a physicist from Northern Ireland and the originator of Bell's theorem, an important theorem in quantum physics regarding hidden-variable theories.
Quantum indeterminacy is the apparent necessary incompleteness in the description of a physical system, that has become one of the characteristics of the standard description of quantum physics. Prior to quantum physics, it was thought that
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.
In quantum mechanics, the measurement problem is the problem of definite outcomes: quantum systems have superpositions but quantum measurements only give one definite result.
A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. The test empirically evaluates the implications of Bell's theorem. As of 2015, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.
In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the principle of locality. These models attempt to account for the probabilistic features of quantum mechanics via the mechanism of underlying, but inaccessible variables, with the additional requirement that distant events be statistically independent.
The Bohr–Einstein debates were a series of public disputes about quantum mechanics between Albert Einstein and Niels Bohr. Their debates are remembered because of their importance to the philosophy of science, insofar as the disagreements—and the outcome of Bohr's version of quantum mechanics becoming the prevalent view—form the root of the modern understanding of physics. Most of Bohr's version of the events held in the Solvay Conference in 1927 and other places was first written by Bohr decades later in an article titled, "Discussions with Einstein on Epistemological Problems in Atomic Physics". Based on the article, the philosophical issue of the debate was whether Bohr's Copenhagen interpretation of quantum mechanics, which centered on his belief of complementarity, was valid in explaining nature. Despite their differences of opinion and the succeeding discoveries that helped solidify quantum mechanics, Bohr and Einstein maintained a mutual admiration that was to last the rest of their lives.
In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, and avoids issues such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat by being inherently nonlocal.
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously. For example, position and momentum or wave and particle properties. In contemporary terms, complementarity encompasses both the uncertainty principle and wave-particle duality.
Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.
In quantum mechanics, the Kochen–Specker (KS) theorem, also known as the Bell–KS theorem, is a "no-go" theorem proved by John S. Bell in 1966 and by Simon B. Kochen and Ernst Specker in 1967. It places certain constraints on the permissible types of hidden-variable theories, which try to explain the predictions of quantum mechanics in a context-independent way. The version of the theorem proved by Kochen and Specker also gave an explicit example for this constraint in terms of a finite number of state vectors.
In quantum mechanics, superdeterminism is a loophole in Bell's theorem. By postulating that all systems being measured are correlated with the choices of which measurements to make on them, the assumptions of the theorem are no longer fulfilled. A hidden variables theory which is superdeterministic can thus fulfill Bell's notion of local causality and still violate the inequalities derived from Bell's theorem. This makes it possible to construct a local hidden-variable theory that reproduces the predictions of quantum mechanics, for which a few toy models have been proposed. In addition to being deterministic, superdeterministic models also postulate correlations between the state that is measured and the measurement setting.
The debate whether Quantum Mechanics is a complete theory and probabilities have a non-epistemic character (i.e. nature is intrinsically probabilistic) or whether it is a statistical approximation of a deterministic theory and probabilities are due to our ignorance of some parameters (i.e. they are epistemic) dates to the beginning of the theory itself
This paper, whose original title was "Elementare Uberlegungen zur Interpretation ¨ der Grundlagen der Quanten-Mechanik", has been translated from the German by Dileep Karanth, Department of Physics, University of Wisconsin-Parkside, Kenosha, USA