An important special case is the Lüders rule, named for Gerhart Lüders. [16] [17] If the POVM is itself a PVM, then the Kraus operators can be taken to be the projectors onto the eigenspaces of the von Neumann observable:
If the initial state is pure, and the projectors have rank 1, they can be written as projectors onto the vectors and , respectively. The formula simplifies thus to
Lüders rule has historically been known as the "reduction of the wave packet" or the "collapse of the wavefunction". [17] [18] [19] The pure state implies a probability-one prediction for any von Neumann observable that has as an eigenvector. Introductory texts on quantum theory often express this by saying that if a quantum measurement is repeated in quick succession, the same outcome will occur both times. This is an oversimplification, since the physical implementation of a quantum measurement may involve a process like the absorption of a photon; after the measurement, the photon does not exist to be measured again. [9] : 91
We can define a linear, trace-preserving, completely positive map, by summing over all the possible post-measurement states of a POVM without the normalisation:
It is an example of a quantum channel, [10] : 150 and can be interpreted as expressing how a quantum state changes if a measurement is performed but the result of that measurement is lost. [10] : 159
The prototypical example of a finite-dimensional Hilbert space is a qubit, a quantum system whose Hilbert space is 2-dimensional. A pure state for a qubit can be written as a linear combination of two orthogonal basis states and with complex coefficients:
A measurement in the basis will yield outcome with probability and outcome with probability , so by normalization,
An arbitrary state for a qubit can be written as a linear combination of the Pauli matrices, which provide a basis for self-adjoint matrices: [10] : 126
where the real numbers are the coordinates of a point within the unit ball and
POVM elements can be represented likewise, though the trace of a POVM element is not fixed to equal 1. The Pauli matrices are traceless and orthogonal to one another with respect to the Hilbert–Schmidt inner product, and so the coordinates of the state are the expectation values of the three von Neumann measurements defined by the Pauli matrices. [10] : 126 If such a measurement is applied to a qubit, then by the Lüders rule, the state will update to the eigenvector of that Pauli matrix corresponding to the measurement outcome. The eigenvectors of are the basis states and , and a measurement of is often called a measurement in the "computational basis." [10] : 76 After a measurement in the computational basis, the outcome of a or measurement is maximally uncertain.
A pair of qubits together form a system whose Hilbert space is 4-dimensional. One significant von Neumann measurement on this system is that defined by the Bell basis, [21] : 36 a set of four maximally entangled states:
A common and useful example of quantum mechanics applied to a continuous degree of freedom is the quantum harmonic oscillator. [22] : 24 This system is defined by the Hamiltonian
where , the momentum operator and the position operator are self-adjoint operators on the Hilbert space of square-integrable functions on the real line. The energy eigenstates solve the time-independent Schrödinger equation:
These eigenvalues can be shown to be given by
and these values give the possible numerical outcomes of an energy measurement upon the oscillator. The set of possible outcomes of a position measurement on a harmonic oscillator is continuous, and so predictions are stated in terms of a probability density function that gives the probability of the measurement outcome lying in the infinitesimal interval from to .
The old quantum theory is a collection of results from the years 1900–1925 [23] which predate modern quantum mechanics. The theory was never complete or self-consistent, but was rather a set of heuristic corrections to classical mechanics. [24] The theory is now understood as a semi-classical approximation [25] to modern quantum mechanics. [26] Notable results from this period include Planck's calculation of the blackbody radiation spectrum, Einstein's explanation of the photoelectric effect, Einstein and Debye's work on the specific heat of solids, Bohr and van Leeuwen's proof that classical physics cannot account for diamagnetism, Bohr's model of the hydrogen atom and Arnold Sommerfeld's extension of the Bohr model to include relativistic effects.
The Stern–Gerlach experiment, proposed in 1921 and implemented in 1922, [27] [28] [29] became a prototypical example of a quantum measurement having a discrete set of possible outcomes. In the original experiment, silver atoms were sent through a spatially varying magnetic field, which deflected them before they struck a detector screen, such as a glass slide. Particles with non-zero magnetic moment are deflected, due to the magnetic field gradient, from a straight path. The screen reveals discrete points of accumulation, rather than a continuous distribution, owing to the particles' quantized spin. [30] [31] [32]
A 1925 paper by Heisenberg, known in English as "Quantum theoretical re-interpretation of kinematic and mechanical relations", marked a pivotal moment in the maturation of quantum physics. [33] Heisenberg sought to develop a theory of atomic phenomena that relied only on "observable" quantities. At the time, and in contrast with the later standard presentation of quantum mechanics, Heisenberg did not regard the position of an electron bound within an atom as "observable". Instead, his principal quantities of interest were the frequencies of light emitted or absorbed by atoms. [33]
The uncertainty principle dates to this period. It is frequently attributed to Heisenberg, who introduced the concept in analyzing a thought experiment where one attempts to measure an electron's position and momentum simultaneously. However, Heisenberg did not give precise mathematical definitions of what the "uncertainty" in these measurements meant. The precise mathematical statement of the position-momentum uncertainty principle is due to Kennard, Pauli, and Weyl, and its generalization to arbitrary pairs of noncommuting observables is due to Robertson and Schrödinger. [34] [35]
Writing and for the self-adjoint operators representing position and momentum respectively, a standard deviation of position can be defined as
and likewise for the momentum:
The Kennard–Pauli–Weyl uncertainty relation is
This inequality means that no preparation of a quantum particle can imply simultaneously precise predictions for a measurement of position and for a measurement of momentum. [36] The Robertson inequality generalizes this to the case of an arbitrary pair of self-adjoint operators and . The commutator of these two operators is
and this provides the lower bound on the product of standard deviations:
Substituting in the canonical commutation relation , an expression first postulated by Max Born in 1925, [37] recovers the Kennard–Pauli–Weyl statement of the uncertainty principle.
The existence of the uncertainty principle naturally raises the question of whether quantum mechanics can be understood as an approximation to a more exact theory. Do there exist "hidden variables", more fundamental than the quantities addressed in quantum theory itself, knowledge of which would allow more exact predictions than quantum theory can provide? A collection of results, most significantly Bell's theorem, have demonstrated that broad classes of such hidden-variable theories are in fact incompatible with quantum physics.
Bell published the theorem now known by his name in 1964, investigating more deeply a thought experiment originally proposed in 1935 by Einstein, Podolsky and Rosen. [38] [39] According to Bell's theorem, if nature actually operates in accord with any theory of local hidden variables, then the results of a Bell test will be constrained in a particular, quantifiable way. If a Bell test is performed in a laboratory and the results are not thus constrained, then they are inconsistent with the hypothesis that local hidden variables exist. Such results would support the position that there is no way to explain the phenomena of quantum mechanics in terms of a more fundamental description of nature that is more in line with the rules of classical physics. Many types of Bell test have been performed in physics laboratories, often with the goal of ameliorating problems of experimental design or set-up that could in principle affect the validity of the findings of earlier Bell tests. This is known as "closing loopholes in Bell tests". To date, Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave. [40] [41]
The Robertson–Schrödinger uncertainty principle establishes that when two observables do not commute, there is a tradeoff in predictability between them. The Wigner–Araki–Yanase theorem demonstrates another consequence of non-commutativity: the presence of a conservation law limits the accuracy with which observables that fail to commute with the conserved quantity can be measured. [42] Further investigation in this line led to the formulation of the Wigner–Yanase skew information. [43]
Historically, experiments in quantum physics have often been described in semiclassical terms. For example, the spin of an atom in a Stern–Gerlach experiment might be treated as a quantum degree of freedom, while the atom is regarded as moving through a magnetic field described by the classical theory of Maxwell's equations. [2] : 24 But the devices used to build the experimental apparatus are themselves physical systems, and so quantum mechanics should be applicable to them as well. Beginning in the 1950s, Rosenfeld, von Weizsäcker and others tried to develop consistency conditions that expressed when a quantum-mechanical system could be treated as a measuring apparatus. [44] One proposal for a criterion regarding when a system used as part of a measuring device can be modeled semiclassically relies on the Wigner function, a quasiprobability distribution that can be treated as a probability distribution on phase space in those cases where it is everywhere non-negative. [2] : 375
A quantum state for an imperfectly isolated system will generally evolve to be entangled with the quantum state for the environment. Consequently, even if the system's initial state is pure, the state at a later time, found by taking the partial trace of the joint system-environment state, will be mixed. This phenomenon of entanglement produced by system-environment interactions tends to obscure the more exotic features of quantum mechanics that the system could in principle manifest. Quantum decoherence, as this effect is known, was first studied in detail during the 1970s. [45] (Earlier investigations into how classical physics might be obtained as a limit of quantum mechanics had explored the subject of imperfectly isolated systems, but the role of entanglement was not fully appreciated. [44] ) A significant portion of the effort involved in quantum computing is to avoid the deleterious effects of decoherence. [46] [21] : 239
To illustrate, let denote the initial state of the system, the initial state of the environment and the Hamiltonian specifying the system-environment interaction. The density operator can be diagonalized and written as a linear combination of the projectors onto its eigenvectors:
Expressing time evolution for a duration by the unitary operator , the state for the system after this evolution is
which evaluates to
The quantities surrounding can be identified as Kraus operators, and so this defines a quantum channel. [45]
Specifying a form of interaction between system and environment can establish a set of "pointer states," states for the system that are (approximately) stable, apart from overall phase factors, with respect to environmental fluctuations. A set of pointer states defines a preferred orthonormal basis for the system's Hilbert space. [2] : 423
Quantum information science studies how information science and its application as technology depend on quantum-mechanical phenomena. Understanding measurement in quantum physics is important for this field in many ways, some of which are briefly surveyed here.
The von Neumann entropy is a measure of the statistical uncertainty represented by a quantum state. For a density matrix , the von Neumann entropy is
writing in terms of its basis of eigenvectors,
the von Neumann entropy is
This is the Shannon entropy of the set of eigenvalues interpreted as a probability distribution, and so the von Neumann entropy is the Shannon entropy of the random variable defined by measuring in the eigenbasis of . Consequently, the von Neumann entropy vanishes when is pure. [10] : 320 The von Neumann entropy of can equivalently be characterized as the minimum Shannon entropy for a measurement given the quantum state , with the minimization over all POVMs with rank-1 elements. [10] : 323
Many other quantities used in quantum information theory also find motivation and justification in terms of measurements. For example, the trace distance between quantum states is equal to the largest difference in probability that those two quantum states can imply for a measurement outcome: [10] : 254
Similarly, the fidelity of two quantum states, defined by
expresses the probability that one state will pass a test for identifying a successful preparation of the other. The trace distance provides bounds on the fidelity via the Fuchs–van de Graaf inequalities: [10] : 274
Quantum circuits are a model for quantum computation in which a computation is a sequence of quantum gates followed by measurements. [21] : 93 The gates are reversible transformations on a quantum mechanical analog of an n-bit register. This analogous structure is referred to as an n-qubit register. Measurements, drawn on a circuit diagram as stylized pointer dials, indicate where and how a result is obtained from the quantum computer after the steps of the computation are executed. Without loss of generality, one can work with the standard circuit model, in which the set of gates are single-qubit unitary transformations and controlled NOT gates on pairs of qubits, and all measurements are in the computational basis. [21] : 93 [47]
Measurement-based quantum computation (MBQC) is a model of quantum computing in which the answer to a question is, informally speaking, created in the act of measuring the physical system that serves as the computer. [21] : 317 [48] [49]
Quantum state tomography is a process by which, given a set of data representing the results of quantum measurements, a quantum state consistent with those measurement results is computed. [50] It is named by analogy with tomography, the reconstruction of three-dimensional images from slices taken through them, as in a CT scan. Tomography of quantum states can be extended to tomography of quantum channels [50] and even of measurements. [51]
Quantum metrology is the use of quantum physics to aid the measurement of quantities that, generally, had meaning in classical physics, such as exploiting quantum effects to increase the precision with which a length can be measured. [52] A celebrated example is the introduction of squeezed light into the LIGO experiment, which increased its sensitivity to gravitational waves. [53] [54]
The range of physical procedures to which the mathematics of quantum measurement can be applied is very broad. [55] In the early years of the subject, laboratory procedures involved the recording of spectral lines, the darkening of photographic film, the observation of scintillations, finding tracks in cloud chambers, and hearing clicks from Geiger counters. [b] Language from this era persists, such as the description of measurement outcomes in the abstract as "detector clicks". [57]
The double-slit experiment is a prototypical illustration of quantum interference, typically described using electrons or photons. The first interference experiment to be carried out in a regime where both wave-like and particle-like aspects of photon behavior are significant was G. I. Taylor's test in 1909. Taylor used screens of smoked glass to attenuate the light passing through his apparatus, to the extent that, in modern language, only one photon would be illuminating the interferometer slits at a time. He recorded the interference patterns on photographic plates; for the dimmest light, the exposure time required was roughly three months. [58] [59] In 1974, the Italian physicists Pier Giorgio Merli, Gian Franco Missiroli, and Giulio Pozzi implemented the double-slit experiment using single electrons and a television tube. [60] A quarter-century later, a team at the University of Vienna performed an interference experiment with buckyballs, in which the buckyballs that passed through the interferometer were ionized by a laser, and the ions then induced the emission of electrons, emissions which were in turn amplified and detected by an electron multiplier. [61]
Modern quantum optics experiments can employ single-photon detectors. For example, in the "BIG Bell test" of 2018, several of the laboratory setups used single-photon avalanche diodes. Another laboratory setup used superconducting qubits. [40] The standard method for performing measurements upon superconducting qubits is to couple a qubit with a resonator in such a way that the characteristic frequency of the resonator shifts according to the state for the qubit, and detecting this shift by observing how the resonator reacts to a probe signal. [62]
Despite the consensus among scientists that quantum physics is in practice a successful theory, disagreements persist on a more philosophical level. Many debates in the area known as quantum foundations concern the role of measurement in quantum mechanics. Recurring questions include which interpretation of probability theory is best suited for the probabilities calculated from the Born rule; and whether the apparent randomness of quantum measurement outcomes is fundamental, or a consequence of a deeper deterministic process. [63] [64] [65] Worldviews that present answers to questions like these are known as "interpretations" of quantum mechanics; as the physicist N. David Mermin once quipped, "New interpretations appear every year. None ever disappear." [66]
A central concern within quantum foundations is the "quantum measurement problem," though how this problem is delimited, and whether it should be counted as one question or multiple separate issues, are contested topics. [56] [67] Of primary interest is the seeming disparity between apparently distinct types of time evolution. Von Neumann declared that quantum mechanics contains "two fundamentally different types" of quantum-state change. [68] : §V.1 First, there are those changes involving a measurement process, and second, there is unitary time evolution in the absence of measurement. The former is stochastic and discontinuous, writes von Neumann, and the latter deterministic and continuous. This dichotomy has set the tone for much later debate. [69] [70] Some interpretations of quantum mechanics find the reliance upon two different types of time evolution distasteful and regard the ambiguity of when to invoke one or the other as a deficiency of the way quantum theory was historically presented. [71] To bolster these interpretations, their proponents have worked to derive ways of regarding "measurement" as a secondary concept and deducing the seemingly stochastic effect of measurement processes as approximations to more fundamental deterministic dynamics. However, consensus has not been achieved among proponents of the correct way to implement this program, and in particular how to justify the use of the Born rule to calculate probabilities. [72] [73] Other interpretations regard quantum states as statistical information about quantum systems, thus asserting that abrupt and discontinuous changes of quantum states are not problematic, simply reflecting updates of the available information. [55] [74] Of this line of thought, Bell asked, "Whose information? Information about what?" [71] Answers to these questions vary among proponents of the informationally-oriented interpretations. [64] [74]
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.
Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are supposed properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."
In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:
Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
In mathematics, particularly in functional analysis, a projection-valued measure is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.
In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.
The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position. It was formulated and published by German physicist Max Born in July, 1926.
In quantum mechanics, notably in quantum information theory, fidelity quantifies the "closeness" between two density matrices. It expresses the probability that one state will pass a test to identify as the other. It is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.
The Ghirardi–Rimini–Weber theory (GRW) is a spontaneous collapse theory in quantum mechanics, proposed in 1986 by Giancarlo Ghirardi, Alberto Rimini, and Tullio Weber.
In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.
In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as where is the density matrix of the state and is the trace operation. The purity defines a measure on quantum states, giving information on how much a state is mixed.
In quantum mechanics, and especially quantum information and the study of open quantum systems, the trace distanceT is a metric on the space of density matrices and gives a measure of the distinguishability between two states. It is the quantum generalization of the Kolmogorov distance for classical probability distributions.
The Koopman–von Neumann (KvN) theory is a description of classical mechanics as an operatorial theory similar to quantum mechanics, based on a Hilbert space of complex, square-integrable wavefunctions. As its name suggests, the KvN theory is loosely related to work by Bernard Koopman and John von Neumann in 1931 and 1932, respectively. As explained in this entry, however, the historical origins of the theory and its name are complicated.
Mathematical Foundations of Quantum Mechanics is a quantum mechanics book written by John von Neumann in 1932. It is an important early work in the development of the mathematical formulation of quantum mechanics. The book mainly summarizes results that von Neumann had published in earlier papers.
In quantum mechanics, weak measurement is a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. From Busch's theorem any quantum system is necessarily disturbed by measurement, but the amount of disturbance is described by a parameter called the measurement strength.
In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.