In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which can only yield integer values may have a non-integer mean). It is a fundamental concept in all areas of quantum physics.
Consider an operator . The expectation value is then in Dirac notation with a normalized state vector.
In quantum theory, an experimental setup is described by the observable to be measured, and the state of the system. The expectation value of in the state is denoted as .
Mathematically, is a self-adjoint operator on a separable complex Hilbert space. In the most commonly used case in quantum mechanics, is a pure state, described by a normalized [a] vector in the Hilbert space. The expectation value of in the state is defined as
(1) |
If dynamics is considered, either the vector or the operator is taken to be time-dependent, depending on whether the Schrödinger picture or Heisenberg picture is used. The evolution of the expectation value does not depend on this choice, however.
If has a complete set of eigenvectors , with eigenvalues so that then ( 1 ) can be expressed as [1]
(2) |
This expression is similar to the arithmetic mean, and illustrates the physical meaning of the mathematical formalism: The eigenvalues are the possible outcomes of the experiment, [b] and their corresponding coefficient is the probability that this outcome will occur; it is often called the transition probability.
A particularly simple case arises when is a projection, and thus has only the eigenvalues 0 and 1. This physically corresponds to a "yes-no" type of experiment. In this case, the expectation value is the probability that the experiment results in "1", and it can be computed as
(3) |
In quantum theory, it is also possible for an operator to have a non-discrete spectrum, such as the position operator in quantum mechanics. This operator has a completely continuous spectrum, with eigenvalues and eigenvectors depending on a continuous parameter, . Specifically, the operator acts on a spatial vector as . [2] In this case, the vector can be written as a complex-valued function on the spectrum of (usually the real line). This is formally achieved by projecting the state vector onto the eigenvalues of the operator, as in the discrete case . It happens that the eigenvectors of the position operator form a complete basis for the vector space of states, and therefore obey a completeness relation in quantum mechanics:
The above may be used to derive the common, integral expression for the expected value ( 4 ), by inserting identities into the vector expression of expected value, then expanding in the position basis:
Where the orthonormality relation of the position basis vectors , reduces the double integral to a single integral. The last line uses the modulus of a complex valued function to replace with , which is a common substitution in quantum-mechanical integrals.
The expectation value may then be stated, where x is unbounded, as the formula
(4) |
A similar formula holds for the momentum operator, in systems where it has continuous spectrum.
All the above formulas are valid for pure states only. Prominently in thermodynamics and quantum optics, also mixed states are of importance; these are described by a positive trace-class operator , the statistical operator or density matrix . The expectation value then can be obtained as
(5) |
In general, quantum states are described by positive normalized linear functionals on the set of observables, mathematically often taken to be a C*-algebra. The expectation value of an observable is then given by
(6) |
If the algebra of observables acts irreducibly on a Hilbert space, and if is a normal functional, that is, it is continuous in the ultraweak topology, then it can be written as with a positive trace-class operator of trace 1. This gives formula ( 5 ) above. In the case of a pure state, is a projection onto a unit vector . Then , which gives formula ( 1 ) above.
is assumed to be a self-adjoint operator. In the general case, its spectrum will neither be entirely discrete nor entirely continuous. Still, one can write in a spectral decomposition, with a projection-valued measure . For the expectation value of in a pure state , this means which may be seen as a common generalization of formulas ( 2 ) and ( 4 ) above.
In non-relativistic theories of finitely many particles (quantum mechanics, in the strict sense), the states considered are generally normal[ clarification needed ]. However, in other areas of quantum theory, also non-normal states are in use: They appear, for example. in the form of KMS states in quantum statistical mechanics of infinitely extended media, [3] and as charged states in quantum field theory. [4] In these cases, the expectation value is determined only by the more general formula ( 6 ).
As an example, consider a quantum mechanical particle in one spatial dimension, in the configuration space representation. Here the Hilbert space is , the space of square-integrable functions on the real line. Vectors are represented by functions , called wave functions. The scalar product is given by . The wave functions have a direct interpretation as a probability distribution:
gives the probability of finding the particle in an infinitesimal interval of length about some point .
As an observable, consider the position operator , which acts on wavefunctions by
The expectation value, or mean value of measurements, of performed on a very large number of identical independent systems will be given by
The expectation value only exists if the integral converges, which is not the case for all vectors . This is because the position operator is unbounded, and has to be chosen from its domain of definition.
In general, the expectation of any observable can be calculated by replacing with the appropriate operator. For example, to calculate the average momentum, one uses the momentum operator in configuration space , . Explicitly, its expectation value is
Not all operators in general provide a measurable value. An operator that has a pure real expectation value is called an observable and its value can be directly measured in experiment.
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.
In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:
In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.
An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
In quantum mechanics, the interaction picture is an intermediate representation between the Schrödinger picture and the Heisenberg picture. Whereas in the other two pictures either the state vector or the operators carry time dependence, in the interaction picture both carry part of the time dependence of observables. The interaction picture is useful in dealing with changes to the wave functions and observables due to interactions. Most field-theoretical calculations use the interaction representation because they construct the solution to the many-body Schrödinger equation as the solution to the free-particle problem plus some unknown interaction parts.
In mathematics, particularly in functional analysis, a projection-valued measure is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.
The Wigner quasiprobability distribution is a quasiprobability distribution. It was introduced by Eugene Wigner in 1932 to study quantum corrections to classical statistical mechanics. The goal was to link the wavefunction that appears in Schrödinger's equation to a probability distribution in phase space.
In quantum mechanics, notably in quantum information theory, fidelity quantifies the "closeness" between two density matrices. It expresses the probability that one state will pass a test to identify as the other. It is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.
In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as where is the density matrix of the state and is the trace operation. The purity defines a measure on quantum states, giving information on how much a state is mixed.
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system.
This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.
The Koopman–von Neumann (KvN) theory is a description of classical mechanics as an operatorial theory similar to quantum mechanics, based on a Hilbert space of complex, square-integrable wavefunctions. As its name suggests, the KvN theory is loosely related to work by Bernard Koopman and John von Neumann in 1931 and 1932, respectively. As explained in this entry, however, the historical origins of the theory and its name are complicated.
Mathematical Foundations of Quantum Mechanics is a quantum mechanics book written by John von Neumann in 1932. It is an important early work in the development of the mathematical formulation of quantum mechanics. The book mainly summarizes results that von Neumann had published in earlier papers.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)The expectation value, in particular as presented in the section "Formalism in quantum mechanics", is covered in most elementary textbooks on quantum mechanics.
For a discussion of conceptual aspects, see: