In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle.
When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions), its eigenvalues are the possible position vectors of the particle. [1]
In one dimension, if by the symbol we denote the unitary eigenvector of the position operator corresponding to the eigenvalue , then, represents the state of the particle in which we know with certainty to find the particle itself at position .
Therefore, denoting the position operator by the symbol – in the literature we find also other symbols for the position operator, for instance (from Lagrangian mechanics), and so on – we can write for every real position .
One possible realization of the unitary state with position is the Dirac delta (function) distribution centered at the position , often denoted by .
In quantum mechanics, the ordered (continuous) family of all Dirac distributions, i.e. the family is called the (unitary) position basis (in one dimension), just because it is a (unitary) eigenbasis of the position operator in the space of distributions dual to the space of wave-functions.
It is fundamental to observe that there exists only one linear continuous endomorphism on the space of tempered distributions such that for every real point . It's possible to prove that the unique above endomorphism is necessarily defined by for every tempered distribution , where denotes the coordinate function of the position line – defined from the real line into the complex plane by
In one dimension – for a particle confined into a straight line – the square modulus of a normalized square integrable wave-function represents the probability density of finding the particle at some position of the real-line, at a certain time.
In other terms, if – at a certain instant of time – the particle is in the state represented by a square integrable wave function and assuming the wave function be of -norm equal 1, then the probability to find the particle in the position range is
Hence the expected value of a measurement of the position for the particle is the value where:
Additionally, the quantum mechanical operator corresponding to the observable position is denoted also by and defined for every wave function and for every point of the real line.
The circumflex over the function on the left side indicates the presence of an operator, so that this equation may be read:
The result of the position operator acting on any wave function equals the coordinate function multiplied by the wave-function .
Or more simply:
The operator multiplies any wave-function by the coordinate function .
Note 1. To be more explicit, we have introduced the coordinate function which simply imbeds the position-line into the complex plane. It is nothing more than the canonical embedding of the real line into the complex plane.
Note 2. The expected value of the position operator, upon a wave function (state) can be reinterpreted as a scalar product: assuming the particle in the state and assuming the function be of class – which immediately implies that the function is integrable, i.e. of class .
Note 3. Strictly speaking, the observable position can be point-wisely defined as for every wave function and for every point of the real line, upon the wave-functions which are precisely point-wise defined functions. In the case of equivalence classes the definition reads directly as follows for every wave-function .
In the above definition, which regards the case of a particle confined upon a line, the careful reader may remark that there does not exist any clear specification of the domain and the co-domain for the position operator. In literature, more or less explicitly, we find essentially three main directions to address this issue.
The eigenfunctions of the position operator (on the space of tempered distributions), represented in position space, are Dirac delta functions.
Informal proof. To show that possible eigenvectors of the position operator should necessarily be Dirac delta distributions, suppose that is an eigenstate of the position operator with eigenvalue . We write the eigenvalue equation in position coordinates, recalling that simply multiplies the wave-functions by the function , in the position representation. Since the function is variable while is a constant, must be zero everywhere except at the point . Clearly, no continuous function satisfies such properties, and we cannot simply define the wave-function to be a complex number at that point because its -norm would be 0 and not 1. This suggest the need of a "functional object" concentrated at the point and with integral different from 0: any multiple of the Dirac delta centered at . The normalized solution to the equation is or better Proof. Here we prove rigorously that Indeed, recalling that the product of any function by the Dirac distribution centered at a point is the value of the function at that point times the Dirac distribution itself, we obtain immediately Meaning of the Dirac delta wave. Although such Dirac states are physically unrealizable and, strictly speaking, they are not functions, Dirac distribution centered at can be thought of as an "ideal state" whose position is known exactly (any measurement of the position always returns the eigenvalue ). Hence, by the uncertainty principle, nothing is known about the momentum of such a state.
The generalisation to three dimensions is straightforward.
The space-time wavefunction is now and the expectation value of the position operator at the state is where the integral is taken over all space. The position operator is
Usually, in quantum mechanics, by representation in the momentum space we intend the representation of states and observables with respect to the canonical unitary momentum basis
In momentum space, the position operator in one dimension is represented by the following differential operator
where:
Consider, for example, the case of a spinless particle moving in one spatial dimension (i.e. in a line). The state space for such a particle contains the L2-space (Hilbert space) of complex-valued and square-integrable (with respect to the Lebesgue measure) functions on the real line.
The position operator in , is pointwise defined by: [2] [3]
for each pointwisely defined square integrable class and for each real number x, with domain where is the coordinate function sending each point to itself.
Since all continuous functions with compact support lie in , Q is densely defined. Q, being simply multiplication by x, is a self-adjoint operator, thus satisfying the requirement of a quantum mechanical observable.
Immediately from the definition we can deduce that the spectrum consists of the entire real line and that Q has purely continuous spectrum, therefore no discrete eigenvalues.
The three-dimensional case is defined analogously. We shall keep the one-dimensional assumption in the following discussion.
As with any quantum mechanical observable, in order to discuss position measurement, we need to calculate the spectral resolution of the position operator which is where is the so-called spectral measure of the position operator.
Since the operator of is just the multiplication operator by the embedding function , its spectral resolution is simple.
For a Borel subset of the real line, let denote the indicator function of . We see that the projection-valued measure is given by i.e., the orthogonal projection is the multiplication operator by the indicator function of .
Therefore, if the system is prepared in a state , then the probability of the measured position of the particle belonging to a Borel set is where is the Lebesgue measure on the real line.
After any measurement aiming to detect the particle within the subset B, the wave function collapses to either or where is the Hilbert space norm on .
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
The Schrödinger equation is a partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.
In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields.
In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is the reduced Planck constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative is used instead of a total derivative since the wave function is also a function of time. The "hat" indicates an operator. The "application" of the operator on a differentiable wave function is as follows:
In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.
In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.
Quantum walks are quantum analogs of classical random walks. In contrast to the classical random walk, where the walker occupies definite states and the randomness arises due to stochastic transitions between states, in quantum walks randomness arises through (1) quantum superposition of states, (2) non-random, reversible unitary evolution and (3) collapse of the wave function due to state measurements.
In quantum field theory, and especially in quantum electrodynamics, the interacting theory leads to infinite quantities that have to be absorbed in a renormalization procedure, in order to be able to predict measurable quantities. The renormalization scheme can depend on the type of particles that are being considered. For particles that can travel asymptotically large distances, or for low energy processes, the on-shell scheme, also known as the physical scheme, is appropriate. If these conditions are not fulfilled, one can turn to other schemes, like the minimal subtraction scheme.
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.