In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle.
When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions), its eigenvalues are the possible position vectors of the particle. [1]
In one dimension, if by the symbol we denote the unitary eigenvector of the position operator corresponding to the eigenvalue , then, represents the state of the particle in which we know with certainty to find the particle itself at position .
Therefore, denoting the position operator by the symbol we can write for every real position .
One possible realization of the unitary state with position is the Dirac delta (function) distribution centered at the position , often denoted by .
In quantum mechanics, the ordered (continuous) family of all Dirac distributions, i.e. the family is called the (unitary) position basis, just because it is a (unitary) eigenbasis of the position operator in the space of tempered distributions.
It is fundamental to observe that there exists only one linear continuous endomorphism on the space of tempered distributions such that for every real point . It's possible to prove that the unique above endomorphism is necessarily defined by for every tempered distribution , where denotes the coordinate function of the position line – defined from the real line into the complex plane by
Consider representing the quantum state of a particle at a certain instant of time by a square integrable wave function . For now, assume one space dimension (i.e. the particle "confined to" a straight line). If the wave function is normalized, then the square modulus represents the probability density of finding the particle at some position of the real-line, at a certain time. That is, if then the probability to find the particle in the position range is
Hence the expected value of a measurement of the position for the particle is where is the coordinate function which is simply the canonical embedding of the position-line into the complex plane.
Strictly speaking, the observable position can be point-wisely defined as for every wave function and for every point of the real line. In the case of equivalence classes the definition reads directly as follows That is, the position operator multiplies any wave-function by the coordinate function .
The generalisation to three dimensions is straightforward.
The space-time wavefunction is now and the expectation value of the position operator at the state is where the integral is taken over all space. The position operator is
In the above definition, which regards the case of a particle confined upon a line, the careful reader may remark that there does not exist any clear specification of the domain and the co-domain for the position operator. In literature, more or less explicitly, we find essentially three main directions to address this issue.
The last case is, in practice, the most widely adopted choice in Quantum Mechanics literature, although never explicitly underlined.[ citation needed ] It addresses the possible absence of eigenvectors by extending the Hilbert space to a rigged Hilbert space: [2] thereby providing a mathematically rigorous notion of eigenvectors and eigenvalues. [3]
The eigenfunctions of the position operator (on the space of tempered distributions), represented in position space, are Dirac delta functions.
Informal proof. To show that possible eigenvectors of the position operator should necessarily be Dirac delta distributions, suppose that is an eigenstate of the position operator with eigenvalue . We write the eigenvalue equation in position coordinates, recalling that simply multiplies the wave-functions by the function , in the position representation. Since the function is variable while is a constant, must be zero everywhere except at the point . Clearly, no continuous function satisfies such properties, and we cannot simply define the wave-function to be a complex number at that point because its -norm would be 0 and not 1. This suggest the need of a "functional object" concentrated at the point and with integral different from 0: any multiple of the Dirac delta centered at . The normalized solution to the equation is or better such that Indeed, recalling that the product of any function by the Dirac distribution centered at a point is the value of the function at that point times the Dirac distribution itself, we obtain immediately Although such Dirac states are physically unrealizable and, strictly speaking, are not functions, Dirac distribution centered at can be thought of as an "ideal state" whose position is known exactly (any measurement of the position always returns the eigenvalue ). Hence, by the uncertainty principle, nothing is known about the momentum of such a state.
Usually, in quantum mechanics, by representation in the momentum space we intend the representation of states and observables with respect to the canonical unitary momentum basis
In momentum space, the position operator in one dimension is represented by the following differential operator
where:
Consider the case of a spinless particle moving in one spatial dimension. The state space for such a particle contains , the Hilbert space of complex-valued and square-integrable (with respect to the Lebesgue measure) functions on the real line.
The position operator is defined as the self-adjoint operator with domain of definition and coordinate function sending each point to itself, such that [4] [5] for each pointwisely defined and .
Immediately from the definition we can deduce that the spectrum consists of the entire real line and that has a strictly continuous spectrum, i.e., no discrete set of eigenvalues.
The three-dimensional case is defined analogously. We shall keep the one-dimensional assumption in the following discussion.
As with any quantum mechanical observable, in order to discuss position measurement, we need to calculate the spectral resolution of the position operator which is where is the so-called spectral measure of the position operator.
Let denote the indicator function for a Borel subset of . Then the spectral measure is given by i.e., as multiplication by the indicator function of .
Therefore, if the system is prepared in a state , then the probability of the measured position of the particle belonging to a Borel set is where is the Lebesgue measure on the real line.
After any measurement aiming to detect the particle within the subset B, the wave function collapses to either or where is the Hilbert space norm on .
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. That is, for all ∊ V. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
In physics, the S-matrix or scattering matrix is a matrix which relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space.
In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".
In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.
In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.
Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.
In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.
Quantum walks are quantum analogs of classical random walks. In contrast to the classical random walk, where the walker occupies definite states and the randomness arises due to stochastic transitions between states, in quantum walks randomness arises through (1) quantum superposition of states, (2) non-random, reversible unitary evolution and (3) collapse of the wave function due to state measurements. Quantum walks are a technique for building quantum algorithms.
Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.
In computable analysis, Weihrauch reducibility is a notion of reducibility between multi-valued functions on represented spaces that roughly captures the uniform computational strength of computational problems. It was originally introduced by Klaus Weihrauch in an unpublished 1992 technical report.