Embedding

Last updated

In mathematics, an embedding (or imbedding [1] ) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.

Contents

When some object is said to be embedded in another object , the embedding is given by some injective and structure-preserving map . The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which and are instances. In the terminology of category theory, a structure-preserving map is called a morphism.

The fact that a map is an embedding is often indicated by the use of a "hooked arrow" ( U+21AARIGHTWARDS ARROW WITH HOOK); [2] thus: (On the other hand, this notation is sometimes reserved for inclusion maps.)

Given and , several different embeddings of in may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational numbers in the real numbers, and the real numbers in the complex numbers. In such cases it is common to identify the domain with its image contained in , so that .

Topology and geometry

General topology

In general topology, an embedding is a homeomorphism onto its image. [3] More explicitly, an injective continuous map between topological spaces and is a topological embedding if yields a homeomorphism between and (where carries the subspace topology inherited from ). Intuitively then, the embedding lets us treat as a subspace of . Every embedding is injective and continuous. Every map that is injective, continuous and either open or closed is an embedding; however there are also embeddings that are neither open nor closed. The latter happens if the image is neither an open set nor a closed set in .

For a given space , the existence of an embedding is a topological invariant of . This allows two spaces to be distinguished if one is able to be embedded in a space while the other is not.

If the domain of a function is a topological space then the function is said to be locally injective at a point if there exists some neighborhood of this point such that the restriction is injective. It is called locally injective if it is locally injective around every point of its domain. Similarly, a local (topological, resp. smooth) embedding is a function for which every point in its domain has some neighborhood to which its restriction is a (topological, resp. smooth) embedding.

Every injective function is locally injective but not conversely. Local diffeomorphisms, local homeomorphisms, and smooth immersions are all locally injective functions that are not necessarily injective. The inverse function theorem gives a sufficient condition for a continuously differentiable function to be (among other things) locally injective. Every fiber of a locally injective function is necessarily a discrete subspace of its domain

Differential topology

In differential topology: Let and be smooth manifolds and be a smooth map. Then is called an immersion if its derivative is everywhere injective. An embedding, or a smooth embedding, is defined to be an immersion that is an embedding in the topological sense mentioned above (i.e. homeomorphism onto its image). [4]

In other words, the domain of an embedding is diffeomorphic to its image, and in particular the image of an embedding must be a submanifold. An immersion is precisely a local embedding, i.e. for any point there is a neighborhood such that is an embedding.

When the domain manifold is compact, the notion of a smooth embedding is equivalent to that of an injective immersion.

An important case is . The interest here is in how large must be for an embedding, in terms of the dimension of . The Whitney embedding theorem [5] states that is enough, and is the best possible linear bound. For example, the real projective space of dimension , where is a power of two, requires for an embedding. However, this does not apply to immersions; for instance, can be immersed in as is explicitly shown by Boy's surface which has self-intersections. The Roman surface fails to be an immersion as it contains cross-caps.

An embedding is proper if it behaves well with respect to boundaries: one requires the map to be such that

The first condition is equivalent to having and . The second condition, roughly speaking, says that is not tangent to the boundary of .

Riemannian and pseudo-Riemannian geometry

In Riemannian geometry and pseudo-Riemannian geometry: Let and be Riemannian manifolds or more generally pseudo-Riemannian manifolds. An isometric embedding is a smooth embedding that preserves the (pseudo-)metric in the sense that is equal to the pullback of by , i.e. . Explicitly, for any two tangent vectors we have

Analogously, isometric immersion is an immersion between (pseudo)-Riemannian manifolds that preserves the (pseudo)-Riemannian metrics.

Equivalently, in Riemannian geometry, an isometric embedding (immersion) is a smooth embedding (immersion) that preserves length of curves (cf. Nash embedding theorem). [6]

Algebra

In general, for an algebraic category , an embedding between two -algebraic structures and is a -morphism that is injective.

Field theory

In field theory, an embedding of a field in a field is a ring homomorphism .

The kernel of is an ideal of , which cannot be the whole field , because of the condition . Furthermore, any field has as ideals only the zero ideal and the whole field itself (because if there is any non-zero field element in an ideal, it is invertible, showing the ideal is the whole field). Therefore, the kernel is , so any embedding of fields is a monomorphism. Hence, is isomorphic to the subfield of . This justifies the name embedding for an arbitrary homomorphism of fields.

Universal algebra and model theory

If is a signature and are -structures (also called -algebras in universal algebra or models in model theory), then a map is a -embedding exactly if all of the following hold:

Here is a model theoretical notation equivalent to . In model theory there is also a stronger notion of elementary embedding.

Order theory and domain theory

In order theory, an embedding of partially ordered sets is a function between partially ordered sets and such that

Injectivity of follows quickly from this definition. In domain theory, an additional requirement is that

is directed.

Metric spaces

A mapping of metric spaces is called an embedding (with distortion ) if

for every and some constant .

Normed spaces

An important special case is that of normed spaces; in this case it is natural to consider linear embeddings.

One of the basic questions that can be asked about a finite-dimensional normed space is, what is the maximal dimension such that the Hilbert space can be linearly embedded into with constant distortion?

The answer is given by Dvoretzky's theorem.

Category theory

In category theory, there is no satisfactory and generally accepted definition of embeddings that is applicable in all categories. One would expect that all isomorphisms and all compositions of embeddings are embeddings, and that all embeddings are monomorphisms. Other typical requirements are: any extremal monomorphism is an embedding and embeddings are stable under pullbacks.

Ideally the class of all embedded subobjects of a given object, up to isomorphism, should also be small, and thus an ordered set. In this case, the category is said to be well powered with respect to the class of embeddings. This allows defining new local structures in the category (such as a closure operator).

In a concrete category, an embedding is a morphism that is an injective function from the underlying set of to the underlying set of and is also an initial morphism in the following sense: If is a function from the underlying set of an object to the underlying set of , and if its composition with is a morphism , then itself is a morphism.

A factorization system for a category also gives rise to a notion of embedding. If is a factorization system, then the morphisms in may be regarded as the embeddings, especially when the category is well powered with respect to . Concrete theories often have a factorization system in which consists of the embeddings in the previous sense. This is the case of the majority of the examples given in this article.

As usual in category theory, there is a dual concept, known as quotient. All the preceding properties can be dualized.

An embedding can also refer to an embedding functor.

See also

Notes

  1. Spivak 1999 , p. 49 suggests that "the English" (i.e. the British) use "embedding" instead of "imbedding".
  2. "Arrows – Unicode" (PDF). Retrieved 2017-02-07.
  3. Hocking & Young 1988 , p. 73. Sharpe 1997 , p. 16.
  4. Bishop & Crittenden 1964 , p. 21. Bishop & Goldberg 1968 , p. 40. Crampin & Pirani 1994 , p. 243. do Carmo 1994 , p. 11. Flanders 1989 , p. 53. Gallot, Hulin & Lafontaine 2004 , p. 12. Kobayashi & Nomizu 1963 , p. 9. Kosinski 2007 , p. 27. Lang 1999 , p. 27. Lee 1997 , p. 15. Spivak 1999 , p. 49. Warner 1983 , p. 22.
  5. Whitney H., Differentiable manifolds, Ann. of Math. (2), 37 (1936), pp. 645–680
  6. Nash J., The embedding problem for Riemannian manifolds, Ann. of Math. (2), 63 (1956), 20–63.

Related Research Articles

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of smooth manifolds; a smooth bijection with a smooth inverse

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Isometry</span> Distance-preserving mathematical transformation

In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.

<span class="mw-page-title-main">Ricci flow</span> Partial differential equation

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

In mathematics, a submersion is a differentiable map between differentiable manifolds whose differential is everywhere surjective. This is a basic concept in differential topology. The notion of a submersion is dual to the notion of an immersion.

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

<span class="mw-page-title-main">Homotopy principle</span>

In mathematics, the homotopy principle is a very general way to solve partial differential equations (PDEs), and more generally partial differential relations (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as the immersion problem, isometric immersion problem, fluid dynamics, and other areas.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

<span class="mw-page-title-main">Submanifold</span> Subset of a manifold that is a manifold itself; an injective immersion into a manifold

In mathematics, a submanifold of a manifold is a subset which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions.

In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally an operator for Minkowski space, to get a form of quantum theory compatible with special relativity; to get the relevant Laplacian as a product of first-order operators he introduced spinors. It was first published in 1928 by Dirac.

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.

In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.

<span class="mw-page-title-main">Immersion (mathematics)</span> Differentiable function whose derivative is everywhere injective

In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : MN is an immersion if

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

References