In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.
A covariety is the class of all coalgebraic structures of a given signature.
A variety of algebras should not be confused with an algebraic variety, which means a set of solutions to a system of polynomial equations. They are formally quite distinct and their theories have little in common.
The term "variety of algebras" refers to algebras in the general sense of universal algebra; there is also a more specific sense of algebra, namely as algebra over a field, i.e. a vector space equipped with a bilinear multiplication.
A signature (in this context) is a set, whose elements are called operations, each of which is assigned a natural number (0, 1, 2, ...) called its arity. Given a signature σ and a set V, whose elements are called variables, a word is a finite rooted tree in which each node is labelled by either a variable or an operation, such that every node labelled by a variable has no branches away from the root and every node labelled by an operation o has as many branches away from the root as the arity of o. An equational law is a pair of such words; the axiom consisting of the words v and w is written as v = w.
A theory consists of a signature, a set of variables, and a set of equational laws. Any theory gives a variety of algebras as follows. Given a theory T, an algebra of T consists of a set A together with, for each operation o of T with arity n, a function oA : An → A such that for each axiom v = w and each assignment of elements of A to the variables in that axiom, the equation holds that is given by applying the operations to the elements of A as indicated by the trees defining v and w. The class of algebras of a given theory T is called a variety of algebras.
Given two algebras of a theory T, say A and B, a homomorphism is a function f : A → B such that
for every operation o of arity n. Any theory gives a category where the objects are algebras of that theory and the morphisms are homomorphisms.
The class of all semigroups forms a variety of algebras of signature (2), meaning that a semigroup has a single binary operation. A sufficient defining equation is the associative law:
The class of groups forms a variety of algebras of signature (2,0,1), the three operations being respectively multiplication (binary), identity (nullary, a constant) and inversion (unary). The familiar axioms of associativity, identity and inverse form one suitable set of identities:
The class of rings also forms a variety of algebras. The signature here is (2,2,0,0,1) (two binary operations, two constants, and one unary operation).
If we fix a specific ring R, we can consider the class of left R-modules. To express the scalar multiplication with elements from R, we need one unary operation for each element of R. If the ring is infinite, we will thus have infinitely many operations, which is allowed by the definition of an algebraic structure in universal algebra. We will then also need infinitely many identities to express the module axioms, which is allowed by the definition of a variety of algebras. So the left R-modules do form a variety of algebras.
The fields do not form a variety of algebras; the requirement that all non-zero elements be invertible cannot be expressed as a universally satisfied identity (see below).
The cancellative semigroups also do not form a variety of algebras, since the cancellation property is not an equation, it is an implication that is not equivalent to any set of equations. However, they do form a quasivariety as the implication defining the cancellation property is an example of a quasi-identity.
Given a class of algebraic structures of the same signature, we can define the notions of homomorphism, subalgebra, and product. Garrett Birkhoff proved that a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and arbitrary products. [1] This is a result of fundamental importance to universal algebra and known as Birkhoff's variety theorem or as the HSP theorem. H, S, and P stand, respectively, for the operations of homomorphism, subalgebra, and product.
One direction of the equivalence mentioned above, namely that a class of algebras satisfying some set of identities must be closed under the HSP operations, follows immediately from the definitions. Proving the converse—classes of algebras closed under the HSP operations must be equational—is more difficult.
Using the easy direction of Birkhoff's theorem, we can for example verify the claim made above, that the field axioms are not expressible by any possible set of identities: the product of fields is not a field, so fields do not form a variety.
A subvariety of a variety of algebras V is a subclass of V that has the same signature as V and is itself a variety, i.e., is defined by a set of identities.
Notice that although every group becomes a semigroup when the identity as a constant is omitted (and/or the inverse operation is omitted), the class of groups does not form a subvariety of the variety of semigroups because the signatures are different. Similarly, the class of semigroups that are groups is not a subvariety of the variety of semigroups. The class of monoids that are groups contains and does not contain its subalgebra (more precisely, submonoid) .
However, the class of abelian groups is a subvariety of the variety of groups because it consists of those groups satisfying xy = yx, with no change of signature. The finitely generated abelian groups do not form a subvariety, since by Birkhoff's theorem they don't form a variety, as an arbitrary product of finitely generated abelian groups is not finitely generated.
Viewing a variety V and its homomorphisms as a category, a subvariety U of V is a full subcategory of V, meaning that for any objects a, b in U, the homomorphisms from a to b in U are exactly those from a to b in V.
Suppose V is a non-trivial variety of algebras, i.e. V contains algebras with more than one element. One can show that for every set S, the variety V contains a free algebra FS on S. This means that there is an injective set map i : S → FS that satisfies the following universal property: given any algebra A in V and any map k : S → A, there exists a unique V-homomorphism f : FS → A such that f ∘ i = k.
This generalizes the notions of free group, free abelian group, free algebra, free module etc. It has the consequence that every algebra in a variety is a homomorphic image of a free algebra.
Besides varieties, category theorists use two other frameworks that are equivalent in terms of the kinds of algebras they describe: finitary monads and Lawvere theories. We may go from a variety to a finitary monad as follows. A category with some variety of algebras as objects and homomorphisms as morphisms is called a finitary algebraic category. For any finitary algebraic category V, the forgetful functor G : V → Set has a left adjoint F : Set → V, namely the functor that assigns to each set the free algebra on that set. This adjunction is monadic , meaning that the category V is equivalent to the Eilenberg–Moore category SetT for the monad T = GF. Moreover the monad T is finitary, meaning it commutes with filtered colimits.
The monad T : Set → Set is thus enough to recover the finitary algebraic category. Indeed, finitary algebraic categories are precisely those categories equivalent to the Eilenberg-Moore categories of finitary monads. Both these, in turn, are equivalent to categories of algebras of Lawvere theories.
Working with monads permits the following generalization. One says a category is an algebraic category if it is monadic over Set. This is a more general notion than "finitary algebraic category" because it admits such categories as CABA (complete atomic Boolean algebras) and CSLat (complete semilattices) whose signatures include infinitary operations. In those two cases the signature is large, meaning that it forms not a set but a proper class, because its operations are of unbounded arity. The algebraic category of sigma algebras also has infinitary operations, but their arity is countable whence its signature is small (forms a set).
Every finitary algebraic category is a locally presentable category.
Since varieties are closed under arbitrary direct products, all non-trivial varieties contain infinite algebras. Attempts have been made to develop a finitary analogue of the theory of varieties. This led, e.g., to the notion of variety of finite semigroups. This kind of variety uses only finitary products. However, it uses a more general kind of identities.
A pseudovariety is usually defined to be a class of algebras of a given signature, closed under the taking of homomorphic images, subalgebras and finitary direct products. Not every author assumes that all algebras of a pseudovariety are finite; if this is the case, one sometimes talks of a variety of finite algebras. For pseudovarieties, there is no general finitary counterpart to Birkhoff's theorem, but in many cases the introduction of a more complex notion of equations allows similar results to be derived. [2]
Pseudovarieties are of particular importance in the study of finite semigroups and hence in formal language theory. Eilenberg's theorem, often referred to as the variety theorem, describes a natural correspondence between varieties of regular languages and pseudovarieties of finite semigroups.
Two monographs available free online:
In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra.
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of S is variously denoted as P(S), 𝒫(S), P(S), , or 2S. Any subset of P(S) is called a family of sets over S.
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.
Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.
In algebra, the kernel of a homomorphism is generally the inverse image of 0. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities that these operations must satisfy.
In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.
In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.
Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation. The motivating example of a relation algebra is the algebra 2 X 2 of all binary relations on a set X, that is, subsets of the cartesian square X2, with R•S interpreted as the usual composition of binary relations R and S, and with the converse of R as the converse relation.
In mathematics, a representation theorem is a theorem that states that every abstract structure with certain properties is isomorphic to another structure.
Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the equational theory of the two values 0 and 1. Common to Boolean algebras, groups, and vector spaces is the notion of an algebraic structure, a set closed under some operations satisfying certain equations.
In mathematics, and more precisely in semigroup theory, a variety of finite semigroups is a class of semigroups having some nice algebraic properties. Those classes can be defined in two distinct ways, using either algebraic notions or topological notions. Varieties of finite monoids, varieties of finite ordered semigroups and varieties of finite ordered monoids are defined similarly.