This article includes a list of general references, but it lacks sufficient corresponding inline citations .(August 2024) |
Algebraic structures |
---|
In mathematics, an algebraic structure or algebraic system [1] consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities (known as axioms) that these operations must satisfy.
An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called scalar multiplication between elements of the field (called scalars ), and elements of the vector space (called vectors ).
Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homomorphisms).
In universal algebra, an algebraic structure is called an algebra; [2] this term may be ambiguous, since, in other contexts, an algebra is an algebraic structure that is a vector space over a field or a module over a commutative ring.
The collection of all structures of a given type (same operations and same laws) is called a variety in universal algebra; this term is also used with a completely different meaning in algebraic geometry, as an abbreviation of algebraic variety. In category theory, the collection of all structures of a given type and homomorphisms between them form a concrete category.
Addition and multiplication are prototypical examples of operations that combine two elements of a set to produce a third element of the same set. These operations obey several algebraic laws. For example, a + (b + c) = (a + b) + c and a(bc) = (ab)c are associative laws, and a + b = b + a and ab = ba are commutative laws. Many systems studied by mathematicians have operations that obey some, but not necessarily all, of the laws of ordinary arithmetic. For example, the possible moves of an object in three-dimensional space can be combined by performing a first move of the object, and then a second move from its new position. Such moves, formally called rigid motions, obey the associative law, but fail to satisfy the commutative law.
Sets with one or more operations that obey specific laws are called algebraic structures. When a new problem involves the same laws as such an algebraic structure, all the results that have been proved using only the laws of the structure can be directly applied to the new problem.
In full generality, algebraic structures may involve an arbitrary collection of operations, including operations that combine more than two elements (higher arity operations) and operations that take only one argument (unary operations) or even zero arguments (nullary operations). The examples listed below are by no means a complete list, but include the most common structures taught in undergraduate courses.
An axiom of an algebraic structure often has the form of an identity, that is, an equation such that the two sides of the equals sign are expressions that involve operations of the algebraic structure and variables. If the variables in the identity are replaced by arbitrary elements of the algebraic structure, the equality must remain true. Here are some common examples.
Some common axioms contain an existential clause. In general, such a clause can be avoided by introducing further operations, and replacing the existential clause by an identity involving the new operation. More precisely, let us consider an axiom of the form "for all X there is y such that", where X is a k-tuple of variables. Choosing a specific value of y for each value of X defines a function which can be viewed as an operation of arity k, and the axiom becomes the identity
The introduction of such auxiliary operation complicates slightly the statement of an axiom, but has some advantages. Given a specific algebraic structure, the proof that an existential axiom is satisfied consists generally of the definition of the auxiliary function, completed with straightforward verifications. Also, when computing in an algebraic structure, one generally uses explicitly the auxiliary operations. For example, in the case of numbers, the additive inverse is provided by the unary minus operation
Also, in universal algebra, a variety is a class of algebraic structures that share the same operations, and the same axioms, with the condition that all axioms are identities. What precedes shows that existential axioms of the above form are accepted in the definition of a variety.
Here are some of the most common existential axioms.
The axioms of an algebraic structure can be any first-order formula, that is a formula involving logical connectives (such as "and", "or" and "not"), and logical quantifiers () that apply to elements (not to subsets) of the structure.
Such a typical axiom is inversion in fields. This axiom cannot be reduced to axioms of preceding types. (it follows that fields do not form a variety in the sense of universal algebra.) It can be stated: "Every nonzero element of a field is invertible;" or, equivalently: the structure has a unary operation inv such that
The operation inv can be viewed either as a partial operation that is not defined for x = 0; or as an ordinary function whose value at 0 is arbitrary and must not be used.
Simple structures: no binary operation:
Group-like structures: one binary operation. The binary operation can be indicated by any symbol, or with no symbol (juxtaposition) as is done for ordinary multiplication of real numbers.
Ring-like structures or Ringoids: two binary operations, often called addition and multiplication, with multiplication distributing over addition.
Lattice structures: two or more binary operations, including operations called meet and join, connected by the absorption law. [3]
Algebraic structures can also coexist with added structure of non-algebraic nature, such as partial order or a topology. The added structure must be compatible, in some sense, with the algebraic structure.
Algebraic structures are defined through different configurations of axioms. Universal algebra abstractly studies such objects. One major dichotomy is between structures that are axiomatized entirely by identities and structures that are not. If all axioms defining a class of algebras are identities, then this class is a variety (not to be confused with algebraic varieties of algebraic geometry).
Identities are equations formulated using only the operations the structure allows, and variables that are tacitly universally quantified over the relevant universe. Identities contain no connectives, existentially quantified variables, or relations of any kind other than the allowed operations. The study of varieties is an important part of universal algebra. An algebraic structure in a variety may be understood as the quotient algebra of term algebra (also called "absolutely free algebra") divided by the equivalence relations generated by a set of identities. So, a collection of functions with given signatures generate a free algebra, the term algebra T. Given a set of equational identities (the axioms), one may consider their symmetric, transitive closure E. The quotient algebra T/E is then the algebraic structure or variety. Thus, for example, groups have a signature containing two operators: the multiplication operator m, taking two arguments, and the inverse operator i, taking one argument, and the identity element e, a constant, which may be considered an operator that takes zero arguments. Given a (countable) set of variables x, y, z, etc. the term algebra is the collection of all possible terms involving m, i, e and the variables; so for example, m(i(x), m(x, m(y,e))) would be an element of the term algebra. One of the axioms defining a group is the identity m(x, i(x)) = e; another is m(x,e) = x. The axioms can be represented as trees. These equations induce equivalence classes on the free algebra; the quotient algebra then has the algebraic structure of a group.
Some structures do not form varieties, because either:
Structures whose axioms unavoidably include nonidentities are among the most important ones in mathematics, e.g., fields and division rings. Structures with nonidentities present challenges varieties do not. For example, the direct product of two fields is not a field, because , but fields do not have zero divisors.
Category theory is another tool for studying algebraic structures (see, for example, Mac Lane 1998). A category is a collection of objects with associated morphisms. Every algebraic structure has its own notion of homomorphism, namely any function compatible with the operation(s) defining the structure. In this way, every algebraic structure gives rise to a category. For example, the category of groups has all groups as objects and all group homomorphisms as morphisms. This concrete category may be seen as a category of sets with added category-theoretic structure. Likewise, the category of topological groups (whose morphisms are the continuous group homomorphisms) is a category of topological spaces with extra structure. A forgetful functor between categories of algebraic structures "forgets" a part of a structure.
There are various concepts in category theory that try to capture the algebraic character of a context, for instance
In a slight abuse of notation, the word "structure" can also refer to just the operations on a structure, instead of the underlying set itself. For example, the sentence, "We have defined a ring structure on the set ", means that we have defined ring operations on the set . For another example, the group can be seen as a set that is equipped with an algebraic structure, namely the operation.
In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.
Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition.
In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.
In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of a module also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers.
In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are.
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets.
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.
In mathematics, a near-ring is an algebraic structure similar to a ring but satisfying fewer axioms. Near-rings arise naturally from functions on groups.
In mathematics, specifically in category theory, F-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algebraic laws may then be glued together in terms of a single functor F, the signature.
In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice x ≤ y and a monoid x•y which admits operations x\z and z/y, loosely analogous to division or implication, when x•y is viewed as multiplication or conjunction, respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Morgan Ward and Robert P. Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ∧, for example Kleene algebras and action algebras.
In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.
Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the equational theory of the two values 0 and 1. Common to Boolean algebras, groups, and vector spaces is the notion of an algebraic structure, a set closed under some operations satisfying certain equations.
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.