Distributive lattice

Last updated

In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice isup to isomorphism given as such a lattice of sets.

Contents

Definition

As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient.

A lattice (L,∨,∧) is distributive if the following additional identity holds for all x, y, and z in L:

x ∧ (yz) = (xy) ∨ (xz).

Viewing lattices as partially ordered sets, this says that the meet operation preserves non-empty finite joins. It is a basic fact of lattice theory that the above condition is equivalent to its dual: [1]

x ∨ (yz) = (xy) ∧ (xz)   for all x, y, and z in L.

In every lattice, if one defines the order relation pq as usual to mean pq=p, then the inequality x ∧ (yz) ≥ (xy) ∨ (xz) and its dual x ∨ (yz) ≤ (xy) ∧ (xz) are always true. A lattice is distributive if one of the converse inequalities holds, too. More information on the relationship of this condition to other distributivity conditions of order theory can be found in the article Distributivity (order theory).

Morphisms

A morphism of distributive lattices is just a lattice homomorphism as given in the article on lattices, i.e. a function that is compatible with the two lattice operations. Because such a morphism of lattices preserves the lattice structure, it will consequently also preserve the distributivity (and thus be a morphism of distributive lattices).

Examples

Young's lattice Young's lattice.svg
Young's lattice

Distributive lattices are ubiquitous but also rather specific structures. As already mentioned the main example for distributive lattices are lattices of sets, where join and meet are given by the usual set-theoretic operations. Further examples include:

Early in the development of the lattice theory Charles S. Peirce believed that all lattices are distributive, that is, distributivity follows from the rest of the lattice axioms. [3] [4] However, independence proofs were given by Schröder, Voigt,(de) Lüroth, Korselt, [5] and Dedekind. [3]

Characteristic properties

M3 1xyz0.svg
diamond lattice M3
N5 1xyz0.svg
pentagon lattice N5
Hasse diagrams of the two prototypical non-distributive lattices. The diamond lattice M3 is non-distributive because x ∧ (yz) = x ∧ 1 = x ≠ 0 = 0 ∨ 0 = (xy) ∨ (xz), while the pentagon lattice N5 is non-distributive because x ∧ (yz) = x ∧ 1 = xz = 0 ∨ z = (xy) ∨ (xz)

Various equivalent formulations to the above definition exist. For example, L is distributive if and only if the following holds for all elements x, y, z in L:

Similarly, L is distributive if and only if

and always imply
Distributive lattice which contains N5 (solid lines, left) and M3 (right) as subset, but not as sublattice Non-dstrbtive lattices-warning.png
Distributive lattice which contains N5 (solid lines, left) and M3 (right) as subset, but not as sublattice

The simplest non-distributive lattices are M3, the "diamond lattice", and N5, the "pentagon lattice". A lattice is distributive if and only if none of its sublattices is isomorphic to M3 or N5; a sublattice is a subset that is closed under the meet and join operations of the original lattice. Note that this is not the same as being a subset that is a lattice under the original order (but possibly with different join and meet operations). Further characterizations derive from the representation theory in the next section.

An alternative way of stating the same fact is that every distributive lattice is a subdirect product of copies of the two-element chain, or that the only subdirectly irreducible member of the class of distributive lattices is the two-element chain. As a corollary, every Boolean lattice has this property as well. [6]

Finally distributivity entails several other pleasant properties. For example, an element of a distributive lattice is meet-prime if and only if it is meet-irreducible, though the latter is in general a weaker property. By duality, the same is true for join-prime and join-irreducible elements. [7] If a lattice is distributive, its covering relation forms a median graph. [8]

Furthermore, every distributive lattice is also modular.

Representation theory

The introduction already hinted at the most important characterization for distributive lattices: a lattice is distributive if and only if it is isomorphic to a lattice of sets (closed under set union and intersection). (The latter structure is sometimes called a ring of sets in this context.) That set union and intersection are indeed distributive in the above sense is an elementary fact. The other direction is less trivial, in that it requires the representation theorems stated below. The important insight from this characterization is that the identities (equations) that hold in all distributive lattices are exactly the ones that hold in all lattices of sets in the above sense.

Birkhoff's representation theorem for distributive lattices states that every finite distributive lattice is isomorphic to the lattice of lower sets of the poset of its join-prime (equivalently: join-irreducible) elements. This establishes a bijection (up to isomorphism) between the class of all finite posets and the class of all finite distributive lattices. This bijection can be extended to a duality of categories between homomorphisms of finite distributive lattices and monotone functions of finite posets. Generalizing this result to infinite lattices, however, requires adding further structure.

Another early representation theorem is now known as Stone's representation theorem for distributive lattices (the name honors Marshall Harvey Stone, who first proved it). It characterizes distributive lattices as the lattices of compact open sets of certain topological spaces. This result can be viewed both as a generalization of Stone's famous representation theorem for Boolean algebras and as a specialization of the general setting of Stone duality.

A further important representation was established by Hilary Priestley in her representation theorem for distributive lattices. In this formulation, a distributive lattice is used to construct a topological space with an additional partial order on its points, yielding a (completely order-separated) ordered Stone space (or Priestley space ). The original lattice is recovered as the collection of clopen lower sets of this space.

As a consequence of Stone's and Priestley's theorems, one easily sees that any distributive lattice is really isomorphic to a lattice of sets. However, the proofs of both statements require the Boolean prime ideal theorem, a weak form of the axiom of choice.

Free distributive lattices

Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (x [?] y) [?] (x [?] z) [?] (y [?] z) = (x [?] y) [?] (x [?] z) [?] (y [?] z). Monotone Boolean functions.svg
Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (xy) ∨ (xz) ∨ (yz) = (xy) ∧ (xz) ∧ (yz).

The free distributive lattice over a set of generators G can be constructed much more easily than a general free lattice. The first observation is that, using the laws of distributivity, every term formed by the binary operations and on a set of generators can be transformed into the following equivalent normal form:

where are finite meets of elements of G. Moreover, since both meet and join are associative, commutative and idempotent, one can ignore duplicates and order, and represent a join of meets like the one above as a set of sets:

where the are finite subsets of G. However, it is still possible that two such terms denote the same element of the distributive lattice. This occurs when there are indices j and k such that is a subset of In this case the meet of will be below the meet of and hence one can safely remove the redundant set without changing the interpretation of the whole term. Consequently, a set of finite subsets of G will be called irredundant whenever all of its elements are mutually incomparable (with respect to the subset ordering); that is, when it forms an antichain of finite sets.

Now the free distributive lattice over a set of generators G is defined on the set of all finite irredundant sets of finite subsets of G. The join of two finite irredundant sets is obtained from their union by removing all redundant sets. Likewise the meet of two sets S and T is the irredundant version of The verification that this structure is a distributive lattice with the required universal property is routine.

The number of elements in free distributive lattices with n generators is given by the Dedekind numbers. These numbers grow rapidly, and are known only for n  9; they are

2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788, 286386577668298411128469151667598498812366 (sequence A000372 in the OEIS ).

The numbers above count the number of elements in free distributive lattices in which the lattice operations are joins and meets of finite sets of elements, including the empty set. If empty joins and empty meets are disallowed, the resulting free distributive lattices have two fewer elements; their numbers of elements form the sequence

0, 1, 4, 18, 166, 7579, 7828352, 2414682040996, 56130437228687557907786, 286386577668298411128469151667598498812364 (sequence A007153 in the OEIS ).

See also

Related Research Articles

<span class="mw-page-title-main">Boolean algebra (structure)</span> Algebraic structure modeling logical operations

In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra.

<span class="mw-page-title-main">Power set</span> Mathematical set containing all subsets of a given set

In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of S is variously denoted as P(S), 𝒫(S), P(S), , , or 2S. The notation 2S, meaning the set of all functions from S to a given set of two elements (e.g., {0, 1}), is used because the powerset of S can be identified with, is equivalent to, or bijective to the set of all the functions from S to the given two-element set.

In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ab of implication such that (ca) ≤ b is equivalent to c ≤ (ab). From a logical standpoint, AB is by this definition the weakest proposition for which modus ponens, the inference rule AB, AB, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by Arend Heyting (1930) to formalize intuitionistic logic.

In mathematics, the Boolean prime ideal theorem states that ideals in a Boolean algebra can be extended to prime ideals. A variation of this statement for filters on sets is known as the ultrafilter lemma. Other theorems are obtained by considering different mathematical structures with appropriate notions of ideals, for example, rings and prime ideals, or distributive lattices and maximal ideals. This article focuses on prime ideal theorems from order theory.

In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable.

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.

In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist.

In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well.

<span class="mw-page-title-main">Antimatroid</span> Mathematical system of orderings or sets

In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included. Dilworth (1940) was the first to study antimatroids, using yet another axiomatization based on lattice theory, and they have been frequently rediscovered in other contexts.

In mathematics, a join-semilattice is a partially ordered set that has a join for any nonempty finite subset. Dually, a meet-semilattice is a partially ordered set which has a meet for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.

Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the equational theory of the two values 0 and 1. Common to Boolean algebras, groups, and vector spaces is the notion of an algebraic structure, a set closed under some operations satisfying certain equations.

In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice.

In mathematics, the congruence lattice problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of some other lattice. The problem was posed by Robert P. Dilworth, and for many years it was one of the most famous and long-standing open problems in lattice theory; it had a deep impact on the development of lattice theory itself. The conjecture that every distributive lattice is a congruence lattice is true for all distributive lattices with at most 1 compact elements, but F. Wehrung provided a counterexample for distributive lattices with ℵ2 compact elements using a construction based on Kuratowski's free set theorem.

In abstract algebra, a skew lattice is an algebraic structure that is a non-commutative generalization of a lattice. While the term skew lattice can be used to refer to any non-commutative generalization of a lattice, since 1989 it has been used primarily as follows.

In mathematics, a median algebra is a set with a ternary operation satisfying a set of axioms which generalise the notions of medians of triples of real numbers and of the Boolean majority function.

In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. Here, a lattice is an abstract structure with two binary operations, the "meet" and "join" operations, which must obey certain axioms; it is distributive if these two operations obey the distributive law. The union and intersection operations, in a family of sets that is closed under these operations, automatically form a distributive lattice, and Birkhoff's representation theorem states that every finite distributive lattice can be formed in this way. It is named after Garrett Birkhoff, who published a proof of it in 1937.

<span class="mw-page-title-main">Dedekind number</span> Combinatorial sequence of numbers

In mathematics, the Dedekind numbers are a rapidly growing sequence of integers named after Richard Dedekind, who defined them in 1897. The Dedekind number M(n) is the number of monotone boolean functions of n variables. Equivalently, it is the number of antichains of subsets of an n-element set, the number of elements in a free distributive lattice with n generators, and one more than the number of abstract simplicial complexes on a set with n elements.

In mathematics, the order polytope of a finite partially ordered set is a convex polytope defined from the set. The points of the order polytope are the monotonic functions from the given set to the unit interval, its vertices correspond to the upper sets of the partial order, and its dimension is the number of elements in the partial order. The order polytope is a distributive polytope, meaning that coordinatewise minima and maxima of pairs of its points remain within the polytope.

In mathematics, economics, and computer science, the lattice of stable matchings is a distributive lattice whose elements are stable matchings. For a given instance of the stable matching problem, this lattice provides an algebraic description of the family of all solutions to the problem. It was originally described in the 1970s by John Horton Conway and Donald Knuth.

References

  1. Birkhoff, Garrett (1967). Lattice Theory . Colloquium Publications (3rd ed.). American Mathematical Society. p.  11. ISBN   0-8218-1025-1. §6, Theorem 9
  2. Felsner, Stefan; Knauer, Kolja (2011), "Distributive lattices, polyhedra, and generalized flows", European Journal of Combinatorics, 32 (1): 45–59, doi: 10.1016/j.ejc.2010.07.011 , MR   2727459 .
  3. 1 2 Peirce, Charles S.; Fisch, M. H.; Kloesel, C. J. W. (1989), Writings of Charles S. Peirce: 1879–1884, Indiana University Press, p. xlvii.
  4. Charles S. Peirce (1880). "On the Algebra of Logic". American Journal of Mathematics. 3: 15–57. doi:10.2307/2369442. JSTOR   2369442., p. 33 bottom
  5. A. Korselt (1894). "Bemerkung zur Algebra der Logik". Mathematische Annalen. 44: 156–157. doi:10.1007/bf01446978. Korselt's non-distributive lattice example is a variant of M3, with 0, 1, and x, y, z corresponding to the empty set, a line, and three distinct points on it, respectively.
  6. Balbes and Dwinger (1975), p. 63 citing Birkhoff, G. "Subdirect unions in universal algebra", Bull. Amer. Math. Soc. SO (1944), 764-768.
  7. See Birkhoff's representation theorem#The partial order of join-irreducibles.
  8. Birkhoff, Garrett; Kiss, S. A. (1947), "A ternary operation in distributive lattices", Bulletin of the American Mathematical Society, 53 (1): 749–752, doi: 10.1090/S0002-9904-1947-08864-9 , MR   0021540 .

Further reading