Transitive binary relations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
indicates that the column's property is always true the row's term (at the very left), while ✗ indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and ✗ in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation be transitive: for all if and then Contents |
In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
Semilattices can also be defined algebraically: join and meet are associative, commutative, idempotent binary operations, and any such operation induces a partial order (and the respective inverse order) such that the result of the operation for any two elements is the least upper bound (or greatest lower bound) of the elements with respect to this partial order.
A lattice is a partially ordered set that is both a meet- and join-semilattice with respect to the same partial order. Algebraically, a lattice is a set with two associative, commutative idempotent binary operations linked by corresponding absorption laws.
Algebraic structures |
---|
A set S partially ordered by the binary relation ≤ is a meet-semilattice if
The greatest lower bound of the set {x, y} is called the meet of x and y, denoted x ∧ y.
Replacing "greatest lower bound" with "least upper bound" results in the dual concept of a join-semilattice. The least upper bound of {x, y} is called the join of x and y, denoted x ∨ y. Meet and join are binary operations on S. A simple induction argument shows that the existence of all possible pairwise suprema (infima), as per the definition, implies the existence of all non-empty finite suprema (infima).
A join-semilattice is bounded if it has a least element, the join of the empty set. Dually, a meet-semilattice is bounded if it has a greatest element, the meet of the empty set.
Other properties may be assumed; see the article on completeness in order theory for more discussion on this subject. That article also discusses how we may rephrase the above definition in terms of the existence of suitable Galois connections between related posets — an approach of special interest for category theoretic investigations of the concept.
A meet-semilattice is an algebraic structure consisting of a set S with a binary operation ∧, called meet, such that for all members x, y, and z of S, the following identities hold:
A meet-semilattice is bounded if S includes an identity element 1 such that x ∧ 1 = x for all x in S.
If the symbol ∨, called join, replaces ∧ in the definition just given, the structure is called a join-semilattice. One can be ambivalent about the particular choice of symbol for the operation, and speak simply of semilattices.
A semilattice is a commutative, idempotent semigroup; i.e., a commutative band. A bounded semilattice is an idempotent commutative monoid.
A partial order is induced on a meet-semilattice by setting x ≤ y whenever x ∧ y = x. For a join-semilattice, the order is induced by setting x ≤ y whenever x ∨ y = y. In a bounded meet-semilattice, the identity 1 is the greatest element of S. Similarly, an identity element in a join semilattice is a least element.
An order theoretic meet-semilattice ⟨S, ≤⟩ gives rise to a binary operation ∧ such that ⟨S, ∧⟩ is an algebraic meet-semilattice. Conversely, the meet-semilattice ⟨S, ∧⟩ gives rise to a binary relation ≤ that partially orders S in the following way: for all elements x and y in S, x ≤ y if and only if x = x ∧ y.
The relation ≤ introduced in this way defines a partial ordering from which the binary operation ∧ may be recovered. Conversely, the order induced by the algebraically defined semilattice ⟨S, ∧⟩ coincides with that induced by ≤.
Hence the two definitions may be used interchangeably, depending on which one is more convenient for a particular purpose. A similar conclusion holds for join-semilattices and the dual ordering ≥.
Semilattices are employed to construct other order structures, or in conjunction with other completeness properties.
The above algebraic definition of a semilattice suggests a notion of morphism between two semilattices. Given two join-semilattices (S, ∨) and (T, ∨), a homomorphism of (join-) semilattices is a function f: S → T such that
Hence f is just a homomorphism of the two semigroups associated with each semilattice. If S and T both include a least element 0, then f should also be a monoid homomorphism, i.e. we additionally require that
In the order-theoretic formulation, these conditions just state that a homomorphism of join-semilattices is a function that preserves binary joins and least elements, if such there be. The obvious dual—replacing ∧ with ∨ and 0 with 1—transforms this definition of a join-semilattice homomorphism into its meet-semilattice equivalent.
Note that any semilattice homomorphism is necessarily monotone with respect to the associated ordering relation. For an explanation see the entry preservation of limits.
There is a well-known equivalence between the category of join-semilattices with zero with -homomorphisms and the category of algebraic lattices with compactness-preserving complete join-homomorphisms, as follows. With a join-semilattice with zero, we associate its ideal lattice . With a -homomorphism of -semilattices, we associate the map , that with any ideal of associates the ideal of generated by . This defines a functor . Conversely, with every algebraic lattice we associate the -semilattice of all compact elements of , and with every compactness-preserving complete join-homomorphism between algebraic lattices we associate the restriction . This defines a functor . The pair defines a category equivalence between and .
Surprisingly, there is a notion of "distributivity" applicable to semilattices, even though distributivity conventionally requires the interaction of two binary operations. This notion requires but a single operation, and generalizes the distributivity condition for lattices. A join-semilattice is distributive if for all a, b, and x with x≤a∨b there exist a' ≤a and b' ≤b such that x = a' ∨b' . Distributive meet-semilattices are defined dually. These definitions are justified by the fact that any distributive join-semilattice in which binary meets exist is a distributive lattice. See the entry distributivity (order theory).
A join-semilattice is distributive if and only if the lattice of its ideals (under inclusion) is distributive.
Nowadays, the term "complete semilattice" has no generally accepted meaning, and various mutually inconsistent definitions exist. If completeness is taken to require the existence of all infinite joins, or all infinite meets, whichever the case may be, as well as finite ones, this immediately leads to partial orders that are in fact complete lattices. For why the existence of all possible infinite joins entails the existence of all possible infinite meets (and vice versa), see the entry completeness (order theory).
Nevertheless, the literature on occasion still takes complete join- or meet-semilattices to be complete lattices. In this case, "completeness" denotes a restriction on the scope of the homomorphisms. Specifically, a complete join-semilattice requires that the homomorphisms preserve all joins, but contrary to the situation we find for completeness properties, this does not require that homomorphisms preserve all meets. On the other hand, we can conclude that every such mapping is the lower adjoint of some Galois connection. The corresponding (unique) upper adjoint will then be a homomorphism of complete meet-semilattices. This gives rise to a number of useful categorical dualities between the categories of all complete semilattices with morphisms preserving all meets or joins, respectively.
Another usage of "complete meet-semilattice" refers to a bounded complete cpo. A complete meet-semilattice in this sense is arguably the "most complete" meet-semilattice that is not necessarily a complete lattice. Indeed, a complete meet-semilattice has all non-empty meets (which is equivalent to being bounded complete) and all directed joins. If such a structure has also a greatest element (the meet of the empty set), it is also a complete lattice. Thus a complete semilattice turns out to be "a complete lattice possibly lacking a top". This definition is of interest specifically in domain theory, where bounded complete algebraic cpos are studied as Scott domains. Hence Scott domains have been called algebraic semilattices.
Cardinality-restricted notions of completeness for semilattices have been rarely considered in the literature. [1]
This section presupposes some knowledge of category theory. In various situations, free semilattices exist. For example, the forgetful functor from the category of join-semilattices (and their homomorphisms) to the category of sets (and functions) admits a left adjoint. Therefore, the free join-semilattice F(S) over a set S is constructed by taking the collection of all non-empty finite subsets of S, ordered by subset inclusion. Clearly, S can be embedded into F(S) by a mapping e that takes any element s in S to the singleton set {s}. Then any function f from a S to a join-semilattice T (more formally, to the underlying set of T) induces a unique homomorphism f' between the join-semilattices F(S) and T, such that f = f' ○ e. Explicitly, f' is given by Now the obvious uniqueness of f' suffices to obtain the required adjunction—the morphism-part of the functor F can be derived from general considerations (see adjoint functors). The case of free meet-semilattices is dual, using the opposite subset inclusion as an ordering. For join-semilattices with bottom, we just add the empty set to the above collection of subsets.
In addition, semilattices often serve as generators for free objects within other categories. Notably, both the forgetful functors from the category of frames and frame-homomorphisms, and from the category of distributive lattices and lattice-homomorphisms, have a left adjoint.
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
In mathematics, pointless topology, also called point-free topology and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions. In this approach it becomes possible to construct topologically interesting spaces from purely algebraic data.
In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. For comparison, in a general lattice, only pairs of elements need to have a supremum and an infimum. Every non-empty finite lattice is complete, but infinite lattices may be incomplete.
In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets.
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.
This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.
In the mathematical area of order theory, one often speaks about functions that preserve certain limits, i.e. certain suprema or infima. Roughly speaking, these functions map the supremum/infimum of a set to the supremum/infimum of the image of the set. Depending on the type of sets for which a function satisfies this property, it may preserve finite, directed, non-empty, or just arbitrary suprema or infima. Each of these requirements appears naturally and frequently in many areas of order theory and there are various important relationships among these concepts and other notions such as monotonicity. If the implication of limit preservation is inverted, such that the existence of limits in the range of a function implies the existence of limits in the domain, then one obtains functions that are limit-reflecting.
In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist.
In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well.
In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the objects of three different categories; the category CHey, the category Loc of locales, and its opposite, the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.
In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice x ≤ y and a monoid x•y which admits operations x\z and z/y, loosely analogous to division or implication, when x•y is viewed as multiplication or conjunction, respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Morgan Ward and Robert P. Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ∧, for example Kleene algebras and action algebras.
In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum of denoted and similarly, the meet of is the infimum, denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion.
In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.
In mathematics, the congruence lattice problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of some other lattice. The problem was posed by Robert P. Dilworth, and for many years it was one of the most famous and long-standing open problems in lattice theory; it had a deep impact on the development of lattice theory itself. The conjecture that every distributive lattice is a congruence lattice is true for all distributive lattices with at most ℵ1 compact elements, but F. Wehrung provided a counterexample for distributive lattices with ℵ2 compact elements using a construction based on Kuratowski's free set theorem.
In mathematics, in the area of order theory, a free lattice is the free object corresponding to a lattice. As free objects, they have the universal property.
In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. Here, a lattice is an abstract structure with two binary operations, the "meet" and "join" operations, which must obey certain axioms; it is distributive if these two operations obey the distributive law. The union and intersection operations, in a family of sets that is closed under these operations, automatically form a distributive lattice, and Birkhoff's representation theorem states that every finite distributive lattice can be formed in this way. It is named after Garrett Birkhoff, who published a proof of it in 1937.
It is often the case that standard treatments of lattice theory define a semilattice, if that, and then say no more. See the references in the entries order theory and lattice theory. Moreover, there is no literature on semilattices of comparable magnitude to that on semigroups.