A relation on a set is transitive if, for all elements , , in , whenever relates to and to , then also relates to .
Symbolic statement
In mathematics, a binary relationR on a setX is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c.
Y indicates that the column's property is always true for the row's term (at the very left), while ✗ indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Y in the "Symmetric" column and ✗ in the "Antisymmetric" column, respectively.
All definitions tacitly require the homogeneous relation be transitive: for all if and then A term's definition may require additional properties that are not listed in this table.
As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy is also an ancestor of Carrie.
On the other hand, "is the birth mother of" is not a transitive relation, because if Alice is the birth mother of Brenda, and Brenda is the birth mother of Claire, then it does not follow that Alice is the birth mother of Claire. In fact, this relation is antitransitive: Alice can never be the birth mother of Claire.
Non-transitive, non-antitransitive relations include sports fixtures (playoff schedules), 'knows' and 'talks to'.
The examples "is greater than", "is at least as great as", and "is equal to" (equality) are transitive relations on various sets. As are the set of real numbers or the set of natural numbers:
whenever x>y and y>z, then also x>z
whenever x≥y and y≥z, then also x≥z
whenever x = y and y = z, then also x = z.
More examples of transitive relations:
"is a subset of" (set inclusion, a relation on sets)
"divides" (divisibility, a relation on natural numbers)
The empty relation on any set is transitive[3] because there are no elements such that and , and hence the transitivity condition is vacuously true. A relation R containing only one ordered pair is also transitive: if the ordered pair is of the form for some the only such elements are , and indeed in this case , while if the ordered pair is not of the form then there are no such elements and hence is vacuously transitive.
Properties
Closure properties
The converse (inverse) of a transitive relation is always transitive. For instance, knowing that "is a subset of" is transitive and "is a superset of" is its converse, one can conclude that the latter is transitive as well.
The intersection of two transitive relations is always transitive.[4] For instance, knowing that "was born before" and "has the same first name as" are transitive, one can conclude that "was born before and also has the same first name as" is also transitive.
The union of two transitive relations need not be transitive. For instance, "was born before or has the same first name as" is not a transitive relation, since e.g. Herbert Hoover is related to Franklin D. Roosevelt, who is in turn related to Franklin Pierce, while Hoover is not related to Franklin Pierce.
The complement of a transitive relation need not be transitive.[5] For instance, while "equal to" is transitive, "not equal to" is only transitive on sets with at most one element.
Let R be a binary relation on set X. The transitive extension of R, denoted R1, is the smallest binary relation on X such that R1 contains R, and if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R1.[7] For example, suppose X is a set of towns, some of which are connected by roads. Let R be the relation on towns where (A, B) ∈ R if there is a road directly linking town A and town B. This relation need not be transitive. The transitive extension of this relation can be defined by (A, C) ∈ R1 if you can travel between towns A and C by using at most two roads.
If a relation is transitive then its transitive extension is itself, that is, if R is a transitive relation then R1 = R.
The transitive extension of R1 would be denoted by R2, and continuing in this way, in general, the transitive extension of Ri would be Ri + 1. The transitive closure of R, denoted by R* or R∞ is the set union of R, R1, R2, ... .[8]
The transitive closure of a relation is a transitive relation.[8]
The relation "is the birth parent of" on a set of people is not a transitive relation. However, in biology the need often arises to consider birth parenthood over an arbitrary number of generations: the relation "is a birth ancestor of" is a transitive relation and it is the transitive closure of the relation "is the birth parent of".
For the example of towns and roads above, (A, C) ∈ R* provided you can travel between towns A and C using any number of roads.
Strict weak ordering – a strict partial order in which incomparability is an equivalence relation
Total ordering – a connected (total), antisymmetric, and transitive relation
Counting transitive relations
No general formula that counts the number of transitive relations on a finite set (sequence A006905 in the OEIS) is known.[9] However, there is a formula for finding the number of relations that are simultaneously reflexive, symmetric, and transitive – in other words, equivalence relations – (sequence A000110 in the OEIS), those that are symmetric and transitive, those that are symmetric, transitive, and antisymmetric, and those that are total, transitive, and antisymmetric. Pfeiffer[10] has made some progress in this direction, expressing relations with combinations of these properties in terms of each other, but still calculating any one is difficult. See also Brinkmann and McKay (2005).[11]
Since the reflexivization of any transitive relation is a preorder, the number of transitive relations an on n-element set is at most 2n time more than the number of preorders, thus it is asymptotically by results of Kleitman and Rothschild.[12]
Number of n-element binary relations of different types
The Rock–paper–scissors game is based on an intransitive and antitransitive relation "x beats y".
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive,[13] but not antitransitive.[14] The relation defined by xRy if x is even and y is odd is both transitive and antitransitive.[15] The relation defined by xRy if x is the successor number of y is both intransitive[16] and antitransitive.[17] Unexpected examples of intransitivity arise in situations such as political questions or group preferences.[18]
↑ Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. (2007). Transitive Closures of Binary Relations I(PDF). Prague: School of Mathematics - Physics Charles University. p.1. Archived from the original(PDF) on 2013-11-02. Lemma 1.1 (iv). Note that this source refers to asymmetric relations as "strictly antisymmetric".
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.