Transitive binary relations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
indicates that the column's property is always true for the row's term (at the very left), while ✗ indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and ✗ in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation be transitive: for all if and then Contents |
In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering.
Every non-empty well-ordered set has a least element. Every element s of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than s. There may be elements, besides the least element, that have no predecessor (see § Natural numbers below for an example). A well-ordered set S contains for every subset T with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of T in S.
If ≤ is a non-strict well ordering, then < is a strict well ordering. A relation is a strict well ordering if and only if it is a well-founded strict total order. The distinction between strict and non-strict well orders is often ignored since they are easily interconvertible.
Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The well-ordering theorem, which is equivalent to the axiom of choice, states that every set can be well ordered. If a set is well ordered (or even if it merely admits a well-founded relation), the proof technique of transfinite induction can be used to prove that a given statement is true for all elements of the set.
The observation that the natural numbers are well ordered by the usual less-than relation is commonly called the well-ordering principle (for natural numbers).
Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The position of each element within the ordered set is also given by an ordinal number. In the case of a finite set, the basic operation of counting, to find the ordinal number of a particular object, or to find the object with a particular ordinal number, corresponds to assigning ordinal numbers one by one to the objects. The size (number of elements, cardinal number) of a finite set is equal to the order type. [1] Counting in the everyday sense typically starts from one, so it assigns to each object the size of the initial segment with that object as last element. Note that these numbers are one more than the formal ordinal numbers according to the isomorphic order, because these are equal to the number of earlier objects (which corresponds to counting from zero). Thus for finite n, the expression "n-th element" of a well-ordered set requires context to know whether this counts from zero or one. In an expression "β-th element" where β can also be an infinite ordinal, it will typically count from zero.
For an infinite set, the order type determines the cardinality, but not conversely: sets of a particular infinite cardinality can have many different order types (see § Natural numbers, below, for an example). For a countably infinite set, the set of possible order types is uncountable.
The standard ordering ≤ of the natural numbers is a well ordering and has the additional property that every non-zero natural number has a unique predecessor.
Another well ordering of the natural numbers is given by defining that all even numbers are less than all odd numbers, and the usual ordering applies within the evens and the odds:
This is a well-ordered set of order type ω + ω. Every element has a successor (there is no largest element). Two elements lack a predecessor: 0 and 1.
Unlike the standard ordering ≤ of the natural numbers, the standard ordering ≤ of the integers is not a well ordering, since, for example, the set of negative integers does not contain a least element.
The following binary relation R is an example of well ordering of the integers: x R y if and only if one of the following conditions holds:
This relation R can be visualized as follows:
R is isomorphic to the ordinal number ω + ω.
Another relation for well ordering the integers is the following definition: if and only if
This well order can be visualized as follows:
This has the order type ω.
The standard ordering ≤ of any real interval is not a well ordering, since, for example, the open interval does not contain a least element. From the ZFC axioms of set theory (including the axiom of choice) one can show that there is a well order of the reals. Also Wacław Sierpiński proved that ZF + GCH (the generalized continuum hypothesis) imply the axiom of choice and hence a well order of the reals. Nonetheless, it is possible to show that the ZFC+GCH axioms alone are not sufficient to prove the existence of a definable (by a formula) well order of the reals. [2] However it is consistent with ZFC that a definable well ordering of the reals exists—for example, it is consistent with ZFC that V=L, and it follows from ZFC+V=L that a particular formula well orders the reals, or indeed any set.
An uncountable subset of the real numbers with the standard ordering ≤ cannot be a well order: Suppose X is a subset of well ordered by ≤. For each x in X, let s(x) be the successor of x in ≤ ordering on X (unless x is the last element of X). Let whose elements are nonempty and disjoint intervals. Each such interval contains at least one rational number, so there is an injective function from A to There is an injection from X to A (except possibly for a last element of X, which could be mapped to zero later). And it is well known that there is an injection from to the natural numbers (which could be chosen to avoid hitting zero). Thus there is an injection from X to the natural numbers, which means that X is countable. On the other hand, a countably infinite subset of the reals may or may not be a well order with the standard ≤. For example,
Examples of well orders:
If a set is totally ordered, then the following are equivalent to each other:
Every well-ordered set can be made into a topological space by endowing it with the order topology.
With respect to this topology there can be two kinds of elements:
For subsets we can distinguish:
A subset is cofinal in the whole set if and only if it is unbounded in the whole set or it has a maximum that is also maximum of the whole set.
A well-ordered set as topological space is a first-countable space if and only if it has order type less than or equal to ω1 (omega-one), that is, if and only if the set is countable or has the smallest uncountable order type.
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. The axiom of choice is equivalent to the statement that every partition has a transversal.
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals.
In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.
Naive Set Theory is a mathematics textbook by Paul Halmos providing an undergraduate introduction to set theory. Originally published by Van Nostrand in 1960, it was reprinted in the Springer-Verlag Undergraduate Texts in Mathematics series in 1974.
In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF.
In mathematics, an order topology is a specific topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ).
Zermelo set theory, as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text and original numbering.
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness".
This article examines the implementation of mathematical concepts in set theory. The implementation of a number of basic mathematical concepts is carried out in parallel in ZFC and in NFU, the version of Quine's New Foundations shown to be consistent by R. B. Jensen in 1969.
In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,..., xn that are true of a set of n-tuples of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.
In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.
In mathematics, especially in set theory, two ordered sets X and Y are said to have the same order type if they are order isomorphic, that is, if there exists a bijection such that both f and its inverse are monotonic.
In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V—that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.
This article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory.
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.
This is a glossary of terms and definitions related to the topic of set theory.