Linear extension

Last updated

In order theory, a branch of mathematics, a linear extension of a partial order is a total order (or linear order) that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order.

Contents

Definitions

Linear extension of a partial order

A partial order is a reflexive, transitive and antisymmetric relation. Given any partial orders and on a set is a linear extension of exactly when

  1. is a total order, and
  2. For every if then

It is that second property that leads mathematicians to describe as extending

Alternatively, a linear extension may be viewed as an order-preserving bijection from a partially ordered set to a chain on the same ground set.

Linear extension of a preorder

A preorder is a reflexive and transitive relation. The difference between a preorder and a partial-order is that a preorder allows two different items to be considered "equivalent", that is, both and hold, while a partial-order allows this only when . A relation is called a linear extension of a preorder if:

  1. is a total preorder, and
  2. For every if then , and
  3. For every if then . Here, means " and not ".

The difference between these definitions is only in condition 3. When the extension is a partial order, condition 3 need not be stated explicitly, since it follows from condition 2. Proof: suppose that and not . By condition 2, . By reflexivity, "not " implies that . Since is a partial order, and imply "not ". Therefore, .

However, for general preorders, condition 3 is needed to rule out trivial extensions. Without this condition, the preorder by which all elements are equivalent ( and hold for all pairs x,y) would be an extension of every preorder.

Order-extension principle

The statement that every partial order can be extended to a total order is known as the order-extension principle. A proof using the axiom of choice was first published by Edward Marczewski (Szpilrajin) in 1930. Marczewski writes that the theorem had previously been proven by Stefan Banach, Kazimierz Kuratowski, and Alfred Tarski, again using the axiom of choice, but that the proofs had not been published. [1]

There is an analogous statement for preorders: every preorder can be extended to a total preorder. This statement was proved by Hansson. [2] :Lemma 3

In modern axiomatic set theory the order-extension principle is itself taken as an axiom, of comparable ontological status to the axiom of choice. The order-extension principle is implied by the Boolean prime ideal theorem or the equivalent compactness theorem, [3] but the reverse implication doesn't hold. [4]

Applying the order-extension principle to a partial order in which every two elements are incomparable shows that (under this principle) every set can be linearly ordered. This assertion that every set can be linearly ordered is known as the ordering principle, OP, and is a weakening of the well-ordering theorem. However, there are models of set theory in which the ordering principle holds while the order-extension principle does not. [5]

The order extension principle is constructively provable for finite sets using topological sorting algorithms, where the partial order is represented by a directed acyclic graph with the set's elements as its vertices. Several algorithms can find an extension in linear time. [6] Despite the ease of finding a single linear extension, the problem of counting all linear extensions of a finite partial order is #P-complete; however, it may be estimated by a fully polynomial-time randomized approximation scheme. [7] [8] Among all partial orders with a fixed number of elements and a fixed number of comparable pairs, the partial orders that have the largest number of linear extensions are semiorders. [9]

The order dimension of a partial order is the minimum cardinality of a set of linear extensions whose intersection is the given partial order; equivalently, it is the minimum number of linear extensions needed to ensure that each critical pair of the partial order is reversed in at least one of the extensions.

Antimatroids may be viewed as generalizing partial orders; in this view, the structures corresponding to the linear extensions of a partial order are the basic words of the antimatroid. [10]

This area also includes one of order theory's most famous open problems, the 1/3–2/3 conjecture, which states that in any finite partially ordered set that is not totally ordered there exists a pair of elements of for which the linear extensions of in which number between 1/3 and 2/3 of the total number of linear extensions of [11] [12] An equivalent way of stating the conjecture is that, if one chooses a linear extension of uniformly at random, there is a pair which has probability between 1/3 and 2/3 of being ordered as However, for certain infinite partially ordered sets, with a canonical probability defined on its linear extensions as a limit of the probabilities for finite partial orders that cover the infinite partial order, the 1/3–2/3 conjecture does not hold. [13]

Algebraic combinatorics

Counting the number of linear extensions of a finite poset is a common problem in algebraic combinatorics. This number is given by the leading coefficient of the order polynomial multiplied by

Young tableau can be considered as linear extensions of a finite order-ideal in the infinite poset and they are counted by the hook length formula.

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.

In mathematics, a directed set is a nonempty set together with a reflexive and transitive binary relation , with the additional property that every pair of elements has an upper bound. In other words, for any and in there must exist in with and A directed set's preorder is called a direction.

<span class="mw-page-title-main">Partially ordered set</span> Mathematical set with an ordering

In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word partial is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is reflexive, transitive and antisymmetric. A partially ordered set is a set on which a partial order is defined.

<span class="mw-page-title-main">Preorder</span> Reflexive and transitive binary relation

In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder: an antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation.

In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation on some set , which satisfies the following for all and in :

  1. (reflexive).
  2. If and then (transitive).
  3. If and then (antisymmetric).
  4. or .
<span class="mw-page-title-main">Zorn's lemma</span> Mathematical proposition equivalent to the axiom of choice

Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain necessarily contains at least one maximal element.

<span class="mw-page-title-main">Maximal and minimal elements</span> Element that is not ≤ (or ≥) any other element

In mathematics, especially in order theory, a maximal element of a subset S of some preordered set is an element of S that is not smaller than any other element in S. A minimal element of a subset S of some preordered set is defined dually as an element of S that is not greater than any other element in S.

In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable.

Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

In mathematics, specifically order theory, a well-quasi-ordering or wqo is a quasi-ordering such that any infinite sequence of elements from contains an increasing pair with

<span class="mw-page-title-main">Weak ordering</span> Mathematical ranking of a set

In mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets and are in turn generalized by (strictly) partially ordered sets and preorders.

<span class="mw-page-title-main">Product order</span>

In mathematics, given two preordered sets and the product order is a partial ordering on the Cartesian product Given two pairs and in declare that if and only if and

<span class="mw-page-title-main">Order dimension</span> Mathematical measure for partial orders

In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order. This concept is also sometimes called the order dimension or the Dushnik–Miller dimension of the partial order. Dushnik & Miller (1941) first studied order dimension; for a more detailed treatment of this subject than provided here, see Trotter (1992).

In combinatorial mathematics, the XYZ inequality, also called the Fishburn–Shepp inequality, is an inequality for the number of linear extensions of finite partial orders. The inequality was conjectured by Ivan Rival and Bill Sands in 1981. It was proved by Lawrence Shepp in Shepp (1982). An extension was given by Peter Fishburn in Fishburn (1984).

In order theory, the Szpilrajn extension theorem, proved by Edward Szpilrajn in 1930, states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes comparable. The theorem is one of many examples of the use of the axiom of choice in the form of Zorn's lemma to find a maximal set with certain properties.

In order theory, a branch of mathematics, the 1/3–2/3 conjecture states that, if one is comparison sorting a set of items then, no matter what comparisons may have already been performed, it is always possible to choose the next comparison in such a way that it will reduce the number of possible sorted orders by a factor of 2/3 or better. Equivalently, in every finite partially ordered set that is not totally ordered, there exists a pair of elements x and y with the property that at least 1/3 and at most 2/3 of the linear extensions of the partial order place x earlier than y.

<span class="mw-page-title-main">Semiorder</span> Numerical ordering with a margin of error

In order theory, a branch of mathematics, a semiorder is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given margin of error are deemed incomparable. Semiorders were introduced and applied in mathematical psychology by Duncan Luce (1956) as a model of human preference. They generalize strict weak orderings, in which items with equal scores may be tied but there is no margin of error. They are a special case of partial orders and of interval orders, and can be characterized among the partial orders by additional axioms, or by two forbidden four-item suborders.

In mathematics, the order polytope of a finite partially ordered set is a convex polytope defined from the set. The points of the order polytope are the monotonic functions from the given set to the unit interval, its vertices correspond to the upper sets of the partial order, and its dimension is the number of elements in the partial order. The order polytope is a distributive polytope, meaning that coordinatewise minima and maxima of pairs of its points remain within the polytope.

References

  1. Marczewski, Edward (1930), "Sur l'extension de l'ordre partiel" (PDF), Fundamenta Mathematicae (in French), 16: 386–389, doi: 10.4064/fm-16-1-386-389 .
  2. Hansson, Bengt (1968). "Choice Structures and Preference Relations". Synthese. 18 (4): 443–458. ISSN   0039-7857.
  3. Jech, Thomas (2008) [originally published in 1973], The Axiom of Choice, Dover Publications, ISBN   978-0-486-46624-8 .
  4. Felgner, U.; Truss, J. K. (March 1999), "The Independence of the Prime Ideal Theorem from the Order-Extension Principle", The Journal of Symbolic Logic, 64 (1): 199–215, CiteSeerX   10.1.1.54.8336 , doi:10.2307/2586759, JSTOR   2586759 .
  5. Mathias, A. R. D. (1971), "The order extension principle", in Scott, Dana S.; Jech, Thomas J. (eds.), Axiomatic Set Theory (University of California, Los Angeles, Calif., July 10 – August 5, 1967), Proceedings of Symposia in Pure Mathematics, vol. 13, American Mathematical Society, pp. 179–183.
  6. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001), "Section 22.4: Topological sort", Introduction to Algorithms (2nd ed.), MIT Press, pp. 549–552, ISBN   978-0-262-03293-3 .
  7. Brightwell, Graham R.; Winkler, Peter (1991), "Counting linear extensions", Order , 8 (3): 225–242, doi:10.1007/BF00383444, S2CID   119697949
  8. Bubley, Russ; Dyer, Martin (1999), "Faster random generation of linear extensions", Discrete Mathematics , 201 (1–3): 81–88, doi: 10.1016/S0012-365X(98)00333-1 , S2CID   2942330 .
  9. Fishburn, Peter C.; Trotter, W. T. (1992), "Linear extensions of semiorders: a maximization problem", Discrete Mathematics , 103 (1): 25–40, doi: 10.1016/0012-365X(92)90036-F , MR   1171114 .
  10. Björner, Anders; Ziegler, Günter M. (1992), "Introduction to Greedoids", in White, Neil (ed.), Matroid Applications, Encyclopedia of Mathematics and its Applications, vol. 40, Cambridge University Press, pp.  284–357, ISBN   978-0-521-38165-9 . See especially item (1) on p. 294.
  11. Kislitsyn, S. S. (1968), "Finite partially ordered sets and their associated sets of permutations", Matematicheskie Zametki, 4: 511–518.
  12. Brightwell, Graham R. (1999), "Balanced pairs in partial orders", Discrete Mathematics , 201 (1–3): 25–52, doi: 10.1016/S0012-365X(98)00311-2 .
  13. Brightwell, G. R.; Felsner, S.; Trotter, W. T. (1995), "Balancing pairs and the cross product conjecture", Order , 12 (4): 327–349, CiteSeerX   10.1.1.38.7841 , doi:10.1007/BF01110378, MR   1368815, S2CID   14793475 .