First-countable space

Last updated

In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space is said to be first-countable if each point has a countable neighbourhood basis (local base). That is, for each point in there exists a sequence of neighbourhoods of such that for any neighbourhood of there exists an integer with contained in Since every neighborhood of any point contains an open neighborhood of that point, the neighbourhood basis can be chosen without loss of generality to consist of open neighborhoods.

Contents

Examples and counterexamples

The majority of 'everyday' spaces in mathematics are first-countable. In particular, every metric space is first-countable. To see this, note that the set of open balls centered at with radius for integers form a countable local base at

An example of a space that is not first-countable is the cofinite topology on an uncountable set (such as the real line). More generally, the Zariski topology on an algebraic variety over an uncountable field is not first-countable.

Another counterexample is the ordinal space where is the first uncountable ordinal number. The element is a limit point of the subset even though no sequence of elements in has the element as its limit. In particular, the point in the space does not have a countable local base. Since is the only such point, however, the subspace is first-countable.

The quotient space where the natural numbers on the real line are identified as a single point is not first countable. [1] However, this space has the property that for any subset and every element in the closure of there is a sequence in A converging to A space with this sequence property is sometimes called a Fréchet–Urysohn space.

First-countability is strictly weaker than second-countability. Every second-countable space is first-countable, but any uncountable discrete space is first-countable but not second-countable.

Properties

One of the most important properties of first-countable spaces is that given a subset a point lies in the closure of if and only if there exists a sequence in that converges to (In other words, every first-countable space is a Fréchet-Urysohn space and thus also a sequential space.) This has consequences for limits and continuity. In particular, if is a function on a first-countable space, then has a limit at the point if and only if for every sequence where for all we have Also, if is a function on a first-countable space, then is continuous if and only if whenever then

In first-countable spaces, sequential compactness and countable compactness are equivalent properties. However, there exist examples of sequentially compact, first-countable spaces that are not compact (these are necessarily not metrizable spaces). One such space is the ordinal space Every first-countable space is compactly generated.

Every subspace of a first-countable space is first-countable. Any countable product of a first-countable space is first-countable, although uncountable products need not be.

See also

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space. It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.

In mathematics, a limit point, accumulation point, or cluster point of a set in a topological space is a point that can be "approximated" by points of in the sense that every neighbourhood of contains a point of other than itself. A limit point of a set does not itself have to be an element of There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence in a topological space is a point such that, for every neighbourhood of there are infinitely many natural numbers such that This definition of a cluster or accumulation point of a sequence generalizes to nets and filters.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In topology, the long line is a topological space somewhat similar to the real line, but in a certain way "longer". It behaves locally just like the real line, but has different large-scale properties. Therefore, it serves as an important counterexample in topology. Intuitively, the usual real-number line consists of a countable number of line segments laid end-to-end, whereas the long line is constructed from an uncountable number of such segments.

<i>Counterexamples in Topology</i> Book by Lynn Steen

Counterexamples in Topology is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In functional analysis and related areas of mathematics, a Montel space, named after Paul Montel, is any topological vector space (TVS) in which an analog of Montel's theorem holds. Specifically, a Montel space is a barrelled topological vector space in which every closed and bounded subset is compact.

In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces are sequential.

In mathematics, a topological space is called countably generated if the topology of is determined by the countable sets in a similar way as the topology of a sequential space is determined by the convergent sequences.

In mathematics, a topological space X is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in .

In mathematics, a topological space is said to be limit point compact or weakly countably compact if every infinite subset of has a limit point in This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.

In mathematics, the first uncountable ordinal, traditionally denoted by or sometimes by , is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum of all countable ordinals. When considered as a set, the elements of are the countable ordinals, of which there are uncountably many.

In the field of topology, a Fréchet–Urysohn space is a topological space with the property that for every subset the closure of in is identical to the sequential closure of in Fréchet–Urysohn spaces are a special type of sequential space.

<span class="mw-page-title-main">Selection principle</span> Rule in mathematics

In mathematics, a selection principle is a rule asserting the possibility of obtaining mathematically significant objects by selecting elements from given sequences of sets. The theory of selection principles studies these principles and their relations to other mathematical properties. Selection principles mainly describe covering properties, measure- and category-theoretic properties, and local properties in topological spaces, especially function spaces. Often, the characterization of a mathematical property using a selection principle is a nontrivial task leading to new insights on the characterized property.

<span class="mw-page-title-main">Alexandroff plank</span> Topological space mathematics

Alexandroff plank in topology, an area of mathematics, is a topological space that serves as an instructive example.

References

  1. ( Engelking 1989 , Example 1.6.18)

Bibliography