Discrete space

Last updated

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.

Contents

Definitions

Given a set :

A metric space is said to be uniformly discrete if there exists a packing radius such that, for any one has either or [1] The topology underlying a metric space can be discrete, without the metric being uniformly discrete: for example the usual metric on the set

Proof that a discrete space is not necessarily uniformly discrete

Let consider this set using the usual metric on the real numbers. Then, is a discrete space, since for each point we can surround it with the open interval where The intersection is therefore trivially the singleton Since the intersection of an open set of the real numbers and is open for the induced topology, it follows that is open so singletons are open and is a discrete space.

However, cannot be uniformly discrete. To see why, suppose there exists an such that whenever It suffices to show that there are at least two points and in that are closer to each other than Since the distance between adjacent points and is we need to find an that satisfies this inequality:

Since there is always an bigger than any given real number, it follows that there will always be at least two points in that are closer to each other than any positive therefore is not uniformly discrete.

Properties

The underlying uniformity on a discrete metric space is the discrete uniformity, and the underlying topology on a discrete uniform space is the discrete topology. Thus, the different notions of discrete space are compatible with one another. On the other hand, the underlying topology of a non-discrete uniform or metric space can be discrete; an example is the metric space (with metric inherited from the real line and given by ). This is not the discrete metric; also, this space is not complete and hence not discrete as a uniform space. Nevertheless, it is discrete as a topological space. We say that is topologically discrete but not uniformly discrete or metrically discrete.

Additionally:

Any function from a discrete topological space to another topological space is continuous, and any function from a discrete uniform space to another uniform space is uniformly continuous. That is, the discrete space is free on the set in the category of topological spaces and continuous maps or in the category of uniform spaces and uniformly continuous maps. These facts are examples of a much broader phenomenon, in which discrete structures are usually free on sets.

With metric spaces, things are more complicated, because there are several categories of metric spaces, depending on what is chosen for the morphisms. Certainly the discrete metric space is free when the morphisms are all uniformly continuous maps or all continuous maps, but this says nothing interesting about the metric structure, only the uniform or topological structure. Categories more relevant to the metric structure can be found by limiting the morphisms to Lipschitz continuous maps or to short maps; however, these categories don't have free objects (on more than one element). However, the discrete metric space is free in the category of bounded metric spaces and Lipschitz continuous maps, and it is free in the category of metric spaces bounded by 1 and short maps. That is, any function from a discrete metric space to another bounded metric space is Lipschitz continuous, and any function from a discrete metric space to another metric space bounded by 1 is short.

Going the other direction, a function from a topological space to a discrete space is continuous if and only if it is locally constant in the sense that every point in has a neighborhood on which is constant.

Every ultrafilter on a non-empty set can be associated with a topology on with the property that every non-empty proper subset of is either an open subset or else a closed subset, but never both. Said differently, every subset is open or closed but (in contrast to the discrete topology) the only subsets that are both open and closed (i.e. clopen) are and . In comparison, every subset of is open and closed in the discrete topology.

Examples and uses

A discrete structure is often used as the "default structure" on a set that doesn't carry any other natural topology, uniformity, or metric; discrete structures can often be used as "extreme" examples to test particular suppositions. For example, any group can be considered as a topological group by giving it the discrete topology, implying that theorems about topological groups apply to all groups. Indeed, analysts may refer to the ordinary, non-topological groups studied by algebraists as "discrete groups". In some cases, this can be usefully applied, for example in combination with Pontryagin duality. A 0-dimensional manifold (or differentiable or analytic manifold) is nothing but a discrete and countable topological space (an uncountable discrete space is not second-countable). We can therefore view any discrete countable group as a 0-dimensional Lie group.

A product of countably infinite copies of the discrete space of natural numbers is homeomorphic to the space of irrational numbers, with the homeomorphism given by the continued fraction expansion. A product of countably infinite copies of the discrete space is homeomorphic to the Cantor set; and in fact uniformly homeomorphic to the Cantor set if we use the product uniformity on the product. Such a homeomorphism is given by using ternary notation of numbers. (See Cantor space.) Every fiber of a locally injective function is necessarily a discrete subspace of its domain.

In the foundations of mathematics, the study of compactness properties of products of is central to the topological approach to the ultrafilter lemma (equivalently, the Boolean prime ideal theorem), which is a weak form of the axiom of choice.

Indiscrete spaces

In some ways, the opposite of the discrete topology is the trivial topology (also called the indiscrete topology), which has the fewest possible open sets (just the empty set and the space itself). Where the discrete topology is initial or free, the indiscrete topology is final or cofree: every function from a topological space to an indiscrete space is continuous, etc.

See also

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

<span class="mw-page-title-main">Continuous function</span> Mathematical function with no sudden changes

In mathematics, a continuous function is a function such that a continuous variation of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

<span class="mw-page-title-main">Uniform continuity</span> Uniform restraint of the change in functions

In mathematics, a real function of real numbers is said to be uniformly continuous if there is a positive real number such that function values over any function domain interval of the size are as close to each other as we want. In other words, for a uniformly continuous real function of real numbers, if we want function value differences to be less than any positive real number , then there is a positive real number such that at any and in any function interval of the size .

<span class="mw-page-title-main">Open set</span> Basic subset of a topological space

In mathematics, an open set is a generalization of an open interval in the real line.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In the mathematical field of general topology, a meagre set is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology.

In topology, the cartesian product of topological spaces can be given several different topologies. One of the more natural choices is the box topology, where a base is given by the Cartesian products of open sets in the component spaces. Another possibility is the product topology, where a base is given by the Cartesian products of open sets in the component spaces, only finitely many of which can be not equal to the entire component space.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size”.

In mathematics, a topological space is said to be limit point compact or weakly countably compact if every infinite subset of has a limit point in This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

References

  1. Pleasants, Peter A.B. (2000). "Designer quasicrystals: Cut-and-project sets with pre-assigned properties". In Baake, Michael (ed.). Directions in mathematical quasicrystals. CRM Monograph Series. Vol. 13. Providence, RI: American Mathematical Society. pp. 95–141. ISBN   0-8218-2629-8. Zbl   0982.52018.
  2. Wilansky 2008, p. 35.