In mathematics, two metrics on the same underlying set are said to be equivalent if the resulting metric spaces share certain properties. Equivalence is a weaker notion than isometry; equivalent metrics do not have to be literally the same. Instead, it is one of several ways of generalizing equivalence of norms to general metric spaces.
Throughout the article, will denote a non-empty set and and will denote two metrics on .
The two metrics and are said to be topologically equivalent if they generate the same topology on . The adverb topologically is often dropped. [1] There are multiple ways of expressing this condition:
The following are sufficient but not necessary conditions for topological equivalence:
Two metrics and on X are strongly or bilipschitz equivalent if and only if there exist positive constants and such that, for every ,
In contrast to the sufficient condition for topological equivalence listed above, strong equivalence requires that there is a single set of constants that holds for every pair of points in , rather than potentially different constants associated with each point of .
Strong equivalence of two metrics implies topological equivalence, but not vice versa. For example, the metrics and on the interval are topologically equivalent, but not strongly equivalent. In fact, this interval is bounded under one of these metrics but not the other. On the other hand, strong equivalences always take bounded sets to bounded sets.
When X is a vector space and the two metrics and are those induced by norms and , respectively, then strong equivalence is equivalent to the condition that, for all ,
For linear operators between normed vector spaces, Lipschitz continuity is equivalent to continuity—an operator satisfying either of these conditions is called bounded. [3] Therefore, in this case, and are topologically equivalent if and only if they are strongly equivalent; the norms and are simply said to be equivalent.
In finite dimensional vector spaces, all metrics induced by a norm, including the euclidean metric, the taxicab metric, and the Chebyshev distance, are equivalent. [4]
In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.
In mathematics, a continuous function is a function such that a continuous variation of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.
In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted and has the following properties:
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the Lipschitz constant of the function. For instance, every function that has bounded first derivatives is Lipschitz continuous.
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In mathematics, a base for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.
In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = n − p is called its codimension.
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root of the inner product of a vector with itself.
In mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors.
In mathematics, a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices.
In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.
In mathematics, in particular in nonlinear analysis, a Fréchet manifold is a topological space modeled on a Fréchet space in much the same way as a manifold is modeled on a Euclidean space.
In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are nonnegative real constants C, α > 0, such that
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.
In mathematics, the mean (topological) dimension of a topological dynamical system is a non-negative extended real number that is a measure of the complexity of the system. Mean dimension was first introduced in 1999 by Gromov. Shortly after it was developed and studied systematically by Lindenstrauss and Weiss. In particular they proved the following key fact: a system with finite topological entropy has zero mean dimension. For various topological dynamical systems with infinite topological entropy, the mean dimension can be calculated or at least bounded from below and above. This allows mean dimension to be used to distinguish between systems with infinite topological entropy. Mean dimension is also related to the problem of embedding topological dynamical systems in shift spaces.
In mathematics, in the areas of topology and functional analysis, the Anderson–Kadec theorem states that any two infinite-dimensional, separable Banach spaces, or, more generally, Fréchet spaces, are homeomorphic as topological spaces. The theorem was proved by Mikhail Kadets (1966) and Richard Davis Anderson.
In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.