Distance set

Last updated

In geometry, the distance set of a collection of points is the set of distances between distinct pairs of points. Thus, it can be seen as the generalization of a difference set, the set of distances (and their negations) in collections of numbers.

Several problems and results in geometry concern distance sets, usually based on the principle that a large collection of points must have a large distance set (for varying definitions of "large"):

Distance sets have also been used as a shape descriptor in computer vision. [10]

See also

References

  1. Arutyunyants, G.; Iosevich, A. (2004), "Falconer conjecture, spherical averages and discrete analogs", in Pach, János (ed.), Towards a Theory of Geometric Graphs, Contemp. Math., vol. 342, Amer. Math. Soc., Providence, RI, pp. 15–24, doi: 10.1090/conm/342/06127 , MR   2065249
  2. Klee, Victor; Wagon, Stan (1991), "Problem 10 Does the plane contain a dense rational set?", Old and New Unsolved Problems in Plane Geometry and Number Theory, Dolciani mathematical expositions, vol. 11, Cambridge University Press, pp. 132–135, ISBN   978-0-88385-315-3 .
  3. Magyar, Ákos (2008), "On distance sets of large sets of integer points", Israel Journal of Mathematics , 164: 251–263, doi: 10.1007/s11856-008-0028-z , MR   2391148, S2CID   17629304
  4. Anning, Norman H.; Erdős, Paul (1945), "Integral distances", Bulletin of the American Mathematical Society , 51 (8): 598–600, doi: 10.1090/S0002-9904-1945-08407-9 .
  5. Guth, Larry; Katz, Nets Hawk (2015), "On the Erdős distinct distances problem in the plane", Annals of Mathematics , 181 (1): 155–190, arXiv: 1011.4105 , doi:10.4007/annals.2015.181.1.2, MR   3272924, S2CID   43051852
  6. Bekir, Ahmad; Golomb, Solomon W. (2007), "There are no further counterexamples to S. Piccard's theorem", IEEE Transactions on Information Theory , 53 (8): 2864–2867, doi:10.1109/TIT.2007.899468, MR   2400501, S2CID   16689687
  7. Koolen, Jack; Laurent, Monique; Schrijver, Alexander (2000), "Equilateral dimension of the rectilinear space", Designs, Codes and Cryptography, 21 (1): 149–164, doi:10.1023/A:1008391712305, MR   1801196, S2CID   9391925
  8. Szöllösi, Ferenc (2018), "The Two-Distance Sets in Dimension Four", in Akiyama, Jin; Marcelo, Reginaldo M.; Ruiz, Mari-Jo P.; Uno, Yushi (eds.), Discrete and Computational Geometry, Graphs, and Games - 21st Japanese Conference, JCDCGGG 2018, Quezon City, Philippines, September 1-3, 2018, Revised Selected Papers, Lecture Notes in Computer Science, vol. 13034, Springer, pp. 18–27, arXiv: 1806.07861 , doi:10.1007/978-3-030-90048-9_2, MR   4390269
  9. Blokhuis, A. (1983), "Chapter 7: Isosceles point sets", Few-Distance Sets (Ph.D. thesis), Eindhoven University of Technology, pp. 46–49, doi:10.6100/IR53747, Zbl   0516.05017
  10. Grigorescu, C.; Petkov, N. (October 2003), "Distance sets for shape filters and shape recognition" (PDF), IEEE Transactions on Image Processing, 12 (10): 1274–1286, doi:10.1109/tip.2003.816010, hdl: 11370/dd4f402f-91b0-47ae-94ec-29428a2d8fb9 , PMID   18237892