In mathematics, a metric projection is a function that maps each element of a metric space to the set of points nearest to that element in some fixed sub-space. [1] [2]
Formally, let X be a metric space with distance metric d, and let M be a fixed subset of X. Then the metric projection associated with M, denoted pM, is the following set-valued function from X to M:
Equivalently:
The elements in the set are also called elements of best approximation. This term comes from constrained optimization: we want to find an element nearer to x, under the constraint that the solution must be a subset of M. The function pM is also called an operator of best approximation.[ citation needed ]
In general, pM is set-valued, as for every x, there may be many elements in M that have the same nearest distance to x. In the special case in which pM is single-valued, the set M is called a Chebyshev set. As an example, if (X,d) is a Euclidean space (Rn with the Euclidean distance), then a set M is a Chebyshev set if and only if it is closed and convex. [3]
If M is non-empty compact set, then the metric projection pM is upper semi-continuous, but might not be lower semi-continuous. But if X is a normed space and M is a finite-dimensional Chebyshev set, then pM is continuous.[ citation needed ]
Moreover, if X is a Hilbert space and M is closed and convex, then pM is Lipschitz continuous with Lipschitz constant 1.[ citation needed ]
Metric projections are used both to investigate theoretical questions in functional analysis and for practical approximation methods. [4] They are also used in constrained optimization. [5]
In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number such that for all x and y in M,
In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the Lipschitz constant of the function. For instance, every function that is defined on an interval and has a bounded first derivative is Lipschitz continuous.
Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere. It may be a closed ball or an open ball.
In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.
Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a distance function called the taxicab distance, Manhattan distance, or city block distance. The name refers to the island of Manhattan, or generically any planned city with a rectangular grid of streets, in which a taxicab can only travel along grid directions. In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length.
In the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance. These maps are the morphisms in the category of metric spaces, Met. Such functions are always continuous functions. They are also called Lipschitz functions with Lipschitz constant 1, nonexpansive maps, nonexpanding maps, weak contractions, or short maps.
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.
In mathematical analysis, a modulus of continuity is a function ω : [0, ∞] → [0, ∞] used to measure quantitatively the uniform continuity of functions. So, a function f : I → R admits ω as a modulus of continuity if
In mathematics, Chebyshev distance, maximum metric, or L∞ metric is a metric defined on a real coordinate space where the distance between two points is the greatest of their differences along any coordinate dimension. It is named after Pafnuty Chebyshev.
The Frank–Wolfe algorithm is an iterative first-order optimization algorithm for constrained convex optimization. Also known as the conditional gradient method, reduced gradient algorithm and the convex combination algorithm, the method was originally proposed by Marguerite Frank and Philip Wolfe in 1956. In each iteration, the Frank–Wolfe algorithm considers a linear approximation of the objective function, and moves towards a minimizer of this linear function.
In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that for all x and y in the domain of f. More generally, the condition can be formulated for functions between any two metric spaces. The number is called the exponent of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder.
In geometry, the geometric median of a discrete point set in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances or absolute differences for one-dimensional data. It is also known as the spatial median, Euclidean minisum point, Torricelli point, or 1-median. It provides a measure of central tendency in higher dimensions and it is a standard problem in facility location, i.e., locating a facility to minimize the cost of transportation.
The study of facility location problems (FLP), also known as location analysis, is a branch of operations research and computational geometry concerned with the optimal placement of facilities to minimize transportation costs while considering factors like avoiding placing hazardous materials near housing, and competitors' facilities. The techniques also apply to cluster analysis.
In geometry, the Chebyshev center of a bounded set having non-empty interior is the center of the minimal-radius ball enclosing the entire set , or alternatively the center of largest inscribed ball of .
In mathematics and statistics, the Fréchet mean is a generalization of centroids to metric spaces, giving a single representative point or central tendency for a cluster of points. It is named after Maurice Fréchet. Karcher mean is the renaming of the Riemannian Center of Mass construction developed by Karsten Grove and Hermann Karcher. On the real numbers, the arithmetic mean, median, geometric mean, and harmonic mean can all be interpreted as Fréchet means for different distance functions.
In information theory, the information projection or I-projection of a probability distribution q onto a set of distributions P is
In mathematical optimization, the proximal operator is an operator associated with a proper, lower semi-continuous convex function from a Hilbert space to , and is defined by:
In mathematics, mirror descent is an iterative optimization algorithm for finding a local minimum of a differentiable function.