This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(May 2009) |
In the mathematical field of topology, a uniform space is a set with additional structure that is used to define uniform properties , such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in analysis.
In addition to the usual properties of a topological structure, in a uniform space one formalizes the notions of relative closeness and closeness of points. In other words, ideas like "x is closer to a than y is to b" make sense in uniform spaces. By comparison, in a general topological space, given sets A,B it is meaningful to say that a point x is arbitrarily close to A (i.e., in the closure of A), or perhaps that A is a smaller neighborhood of x than B, but notions of closeness of points and relative closeness are not described well by topological structure alone.
There are three equivalent definitions for a uniform space. They all consist of a space equipped with a uniform structure.
This definition adapts the presentation of a topological space in terms of neighborhood systems. A nonempty collection of subsets of is a uniform structure (or a uniformity) if it satisfies the following axioms:
The non-emptiness of taken together with (2) and (3) states that is a filter on If the last property is omitted we call the space quasiuniform. An element of is called a vicinity or entourage from the French word for surroundings.
One usually writes where is the vertical cross section of and is the canonical projection onto the second coordinate. On a graph, a typical entourage is drawn as a blob surrounding the "" diagonal; all the different 's form the vertical cross-sections. If then one says that and are -close. Similarly, if all pairs of points in a subset of are -close (that is, if is contained in ), is called -small. An entourage is symmetric if precisely when The first axiom states that each point is -close to itself for each entourage The third axiom guarantees that being "both -close and -close" is also a closeness relation in the uniformity. The fourth axiom states that for each entourage there is an entourage that is "not more than half as large". Finally, the last axiom states that the property "closeness" with respect to a uniform structure is symmetric in and
A base of entourages or fundamental system of entourages (or vicinities) of a uniformity is any set of entourages of such that every entourage of contains a set belonging to Thus, by property 2 above, a fundamental systems of entourages is enough to specify the uniformity unambiguously: is the set of subsets of that contain a set of Every uniform space has a fundamental system of entourages consisting of symmetric entourages.
Intuition about uniformities is provided by the example of metric spaces: if is a metric space, the sets form a fundamental system of entourages for the standard uniform structure of Then and are -close precisely when the distance between and is at most
A uniformity is finer than another uniformity on the same set if in that case is said to be coarser than
Uniform spaces may be defined alternatively and equivalently using systems of pseudometrics, an approach that is particularly useful in functional analysis (with pseudometrics provided by seminorms). More precisely, let be a pseudometric on a set The inverse images for can be shown to form a fundamental system of entourages of a uniformity. The uniformity generated by the is the uniformity defined by the single pseudometric Certain authors call spaces the topology of which is defined in terms of pseudometrics gauge spaces.
For a family of pseudometrics on the uniform structure defined by the family is the least upper bound of the uniform structures defined by the individual pseudometrics A fundamental system of entourages of this uniformity is provided by the set of finite intersections of entourages of the uniformities defined by the individual pseudometrics If the family of pseudometrics is finite, it can be seen that the same uniform structure is defined by a single pseudometric, namely the upper envelope of the family.
Less trivially, it can be shown that a uniform structure that admits a countable fundamental system of entourages (hence in particular a uniformity defined by a countable family of pseudometrics) can be defined by a single pseudometric. A consequence is that any uniform structure can be defined as above by a (possibly uncountable) family of pseudometrics (see Bourbaki: General Topology Chapter IX §1 no. 4).
A uniform space is a set equipped with a distinguished family of coverings called "uniform covers", drawn from the set of coverings of that form a filter when ordered by star refinement. One says that a cover is a star refinement of cover written if for every there is a such that if then Axiomatically, the condition of being a filter reduces to:
Given a point and a uniform cover one can consider the union of the members of that contain as a typical neighbourhood of of "size" and this intuitive measure applies uniformly over the space.
Given a uniform space in the entourage sense, define a cover to be uniform if there is some entourage such that for each there is an such that These uniform covers form a uniform space as in the second definition. Conversely, given a uniform space in the uniform cover sense, the supersets of as ranges over the uniform covers, are the entourages for a uniform space as in the first definition. Moreover, these two transformations are inverses of each other. [1]
Every uniform space becomes a topological space by defining a nonempty subset to be open if and only if for every there exists an entourage such that is a subset of In this topology, the neighbourhood filter of a point is This can be proved with a recursive use of the existence of a "half-size" entourage. Compared to a general topological space the existence of the uniform structure makes possible the comparison of sizes of neighbourhoods: and are considered to be of the "same size".
The topology defined by a uniform structure is said to be induced by the uniformity. A uniform structure on a topological space is compatible with the topology if the topology defined by the uniform structure coincides with the original topology. In general several different uniform structures can be compatible with a given topology on
A topological space is called uniformizable if there is a uniform structure compatible with the topology.
Every uniformizable space is a completely regular topological space. Moreover, for a uniformizable space the following are equivalent:
Some authors (e.g. Engelking) add this last condition directly in the definition of a uniformizable space.
The topology of a uniformizable space is always a symmetric topology; that is, the space is an R0-space.
Conversely, each completely regular space is uniformizable. A uniformity compatible with the topology of a completely regular space can be defined as the coarsest uniformity that makes all continuous real-valued functions on uniformly continuous. A fundamental system of entourages for this uniformity is provided by all finite intersections of sets where is a continuous real-valued function on and is an entourage of the uniform space This uniformity defines a topology, which is clearly coarser than the original topology of that it is also finer than the original topology (hence coincides with it) is a simple consequence of complete regularity: for any and a neighbourhood of there is a continuous real-valued function with and equal to 1 in the complement of
In particular, a compact Hausdorff space is uniformizable. In fact, for a compact Hausdorff space the set of all neighbourhoods of the diagonal in form the unique uniformity compatible with the topology.
A Hausdorff uniform space is metrizable if its uniformity can be defined by a countable family of pseudometrics. Indeed, as discussed above, such a uniformity can be defined by a single pseudometric, which is necessarily a metric if the space is Hausdorff. In particular, if the topology of a vector space is Hausdorff and definable by a countable family of seminorms, it is metrizable.
Similar to continuous functions between topological spaces, which preserve topological properties, are the uniformly continuous functions between uniform spaces, which preserve uniform properties.
A uniformly continuous function is defined as one where inverse images of entourages are again entourages, or equivalently, one where the inverse images of uniform covers are again uniform covers. Explicitly, a function between uniform spaces is called uniformly continuous if for every entourage in there exists an entourage in such that if then or in other words, whenever is an entourage in then is an entourage in , where is defined by
All uniformly continuous functions are continuous with respect to the induced topologies.
Uniform spaces with uniform maps form a category. An isomorphism between uniform spaces is called a uniform isomorphism ; explicitly, it is a uniformly continuous bijection whose inverse is also uniformly continuous. A uniform embedding is an injective uniformly continuous map between uniform spaces whose inverse is also uniformly continuous, where the image has the subspace uniformity inherited from
Generalizing the notion of complete metric space, one can also define completeness for uniform spaces. Instead of working with Cauchy sequences, one works with Cauchy filters (or Cauchy nets).
A Cauchy filter (respectively, a Cauchy prefilter) on a uniform space is a filter (respectively, a prefilter) such that for every entourage there exists with In other words, a filter is Cauchy if it contains "arbitrarily small" sets. It follows from the definitions that each filter that converges (with respect to the topology defined by the uniform structure) is a Cauchy filter. A minimal Cauchy filter is a Cauchy filter that does not contain any smaller (that is, coarser) Cauchy filter (other than itself). It can be shown that every Cauchy filter contains a unique minimal Cauchy filter. The neighbourhood filter of each point (the filter consisting of all neighbourhoods of the point) is a minimal Cauchy filter.
Conversely, a uniform space is called complete if every Cauchy filter converges. Any compact Hausdorff space is a complete uniform space with respect to the unique uniformity compatible with the topology.
Complete uniform spaces enjoy the following important property: if is a uniformly continuous function from a dense subset of a uniform space into a complete uniform space then can be extended (uniquely) into a uniformly continuous function on all of
A topological space that can be made into a complete uniform space, whose uniformity induces the original topology, is called a completely uniformizable space.
A completion of a uniform space is a pair consisting of a complete uniform space and a uniform embedding whose image is a dense subset of
As with metric spaces, every uniform space has a Hausdorff completion: that is, there exists a complete Hausdorff uniform space and a uniformly continuous map (if is a Hausdorff uniform space then is a topological embedding) with the following property:
The Hausdorff completion is unique up to isomorphism. As a set, can be taken to consist of the minimal Cauchy filters on As the neighbourhood filter of each point in is a minimal Cauchy filter, the map can be defined by mapping to The map thus defined is in general not injective; in fact, the graph of the equivalence relation is the intersection of all entourages of and thus is injective precisely when is Hausdorff.
The uniform structure on is defined as follows: for each symmetric entourage (that is, such that implies ), let be the set of all pairs of minimal Cauchy filters which have in common at least one -small set. The sets can be shown to form a fundamental system of entourages; is equipped with the uniform structure thus defined.
The set is then a dense subset of If is Hausdorff, then is an isomorphism onto and thus can be identified with a dense subset of its completion. Moreover, is always Hausdorff; it is called the Hausdorff uniform space associated with If denotes the equivalence relation then the quotient space is homeomorphic to
This uniform structure on generates the usual metric space topology on However, different metric spaces can have the same uniform structure (trivial example is provided by a constant multiple of a metric). This uniform structure produces also equivalent definitions of uniform continuity and completeness for metric spaces.
Before André Weil gave the first explicit definition of a uniform structure in 1937, uniform concepts, like completeness, were discussed using metric spaces. Nicolas Bourbaki provided the definition of uniform structure in terms of entourages in the book Topologie Générale and John Tukey gave the uniform cover definition. Weil also characterized uniform spaces in terms of a family of pseudometrics.
In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.
In topology and related branches of mathematics, a Hausdorff space ( HOWSS-dorf, HOWZ-dorf), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.
In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space. Nets are primarily used in the fields of analysis and topology, where they are used to characterize many important topological properties that, sequences are unable to characterize. Nets are in one-to-one correspondence with filters.
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.
This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. For a list of terms specific to algebraic topology, see Glossary of algebraic topology.
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include Banach spaces, Hilbert spaces and Sobolev spaces.
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.
In topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other. Also some authors include some separation axiom in the definition of one or both terms, and others don't.
In general topology and analysis, a Cauchy space is a generalization of metric spaces and uniform spaces for which the notion of Cauchy convergence still makes sense. Cauchy spaces were introduced by H. H. Keller in 1968, as an axiomatic tool derived from the idea of a Cauchy filter, in order to study completeness in topological spaces. The category of Cauchy spaces and Cauchy continuous maps is Cartesian closed, and contains the category of proximity spaces.
In general topology and related areas of mathematics, the initial topology on a set with respect to a family of functions on is the coarsest topology on that makes those functions continuous.
In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size”.
In mathematics, a topological space X is uniformizable if there exists a uniform structure on X that induces the topology of X. Equivalently, X is uniformizable if and only if it is homeomorphic to a uniform space.
In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.