In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties.
On any smooth manifold, every exact form is closed, but the converse may fail to hold. Roughly speaking, this failure is related to the possible existence of "holes" in the manifold, and the de Rham cohomology groups comprise a set of topological invariants of smooth manifolds that precisely quantify this relationship. [1]
The integration on forms concept is of fundamental importance in differential topology, geometry, and physics, and also yields one of the most important examples of cohomology, namely de Rham cohomology, which (roughly speaking) measures precisely the extent to which the fundamental theorem of calculus fails in higher dimensions and on general manifolds.
— Terence Tao,Differential Forms and Integration [2]
The de Rham complex is the cochain complex of differential forms on some smooth manifold M, with the exterior derivative as the differential:
where Ω0(M) is the space of smooth functions on M, Ω1(M) is the space of 1-forms, and so forth. Forms that are the image of other forms under the exterior derivative, plus the constant 0 function in Ω0(M), are called exact and forms whose exterior derivative is 0 are called closed (see Closed and exact differential forms ); the relationship d2 = 0 then says that exact forms are closed.
In contrast, closed forms are not necessarily exact. An illustrative case is a circle as a manifold, and the 1-form corresponding to the derivative of angle from a reference point at its centre, typically written as dθ (described at Closed and exact differential forms ). There is no function θ defined on the whole circle such that dθ is its derivative; the increase of 2π in going once around the circle in the positive direction implies a multivalued function θ. Removing one point of the circle obviates this, at the same time changing the topology of the manifold.
One prominent example when all closed forms are exact is when the underlying space is contractible to a point or, more generally, if it is simply connected (no-holes condition). In this case the exterior derivative restricted to closed forms has a local inverse called a homotopy operator. [3] [4] Since it is also nilpotent, [3] it forms a dual chain complex with the arrows reversed [5] compared to the de Rham complex. This is the situation described in the Poincaré lemma.
The idea behind de Rham cohomology is to define equivalence classes of closed forms on a manifold. One classifies two closed forms α, β ∈ Ωk(M) as cohomologous if they differ by an exact form, that is, if α − β is exact. This classification induces an equivalence relation on the space of closed forms in Ωk(M). One then defines the k-th de Rham cohomology group to be the set of equivalence classes, that is, the set of closed forms in Ωk(M) modulo the exact forms.
Note that, for any manifold M composed of m disconnected components, each of which is connected, we have that
This follows from the fact that any smooth function on M with zero derivative everywhere is separately constant on each of the connected components of M.
One may often find the general de Rham cohomologies of a manifold using the above fact about the zero cohomology and a Mayer–Vietoris sequence. Another useful fact is that the de Rham cohomology is a homotopy invariant. While the computation is not given, the following are the computed de Rham cohomologies for some common topological objects:
For the n-sphere, , and also when taken together with a product of open intervals, we have the following. Let n > 0, m ≥ 0, and I be an open real interval. Then
The -torus is the Cartesian product: . Similarly, allowing here, we obtain
We can also find explicit generators for the de Rham cohomology of the torus directly using differential forms. Given a quotient manifold and a differential form we can say that is -invariant if given any diffeomorphism induced by , we have . In particular, the pullback of any form on is -invariant. Also, the pullback is an injective morphism. In our case of the differential forms are -invariant since . But, notice that for is not an invariant -form. This with injectivity implies that
Since the cohomology ring of a torus is generated by , taking the exterior products of these forms gives all of the explicit representatives for the de Rham cohomology of a torus.
Punctured Euclidean space is simply with the origin removed.
We may deduce from the fact that the Möbius strip, M, can be deformation retracted to the 1-sphere (i.e. the real unit circle), that:
Stokes' theorem is an expression of duality between de Rham cohomology and the homology of chains. It says that the pairing of differential forms and chains, via integration, gives a homomorphism from de Rham cohomology to singular cohomology groups de Rham's theorem, proved by Georges de Rham in 1931, states that for a smooth manifold M, this map is in fact an isomorphism.
More precisely, consider the map
defined as follows: for any , let I(ω) be the element of that acts as follows:
The theorem of de Rham asserts that this is an isomorphism between de Rham cohomology and singular cohomology.
The exterior product endows the direct sum of these groups with a ring structure. A further result of the theorem is that the two cohomology rings are isomorphic (as graded rings), where the analogous product on singular cohomology is the cup product.
For any smooth manifold M, let be the constant sheaf on M associated to the abelian group ; in other words, is the sheaf of locally constant real-valued functions on M. Then we have a natural isomorphism
between the de Rham cohomology and the sheaf cohomology of . (Note that this shows that de Rham cohomology may also be computed in terms of Čech cohomology; indeed, since every smooth manifold is paracompact Hausdorff we have that sheaf cohomology is isomorphic to the Čech cohomology for any good cover of M.)
The standard proof proceeds by showing that the de Rham complex, when viewed as a complex of sheaves, is an acyclic resolution of . In more detail, let m be the dimension of M and let denote the sheaf of germs of -forms on M (with the sheaf of functions on M). By the Poincaré lemma, the following sequence of sheaves is exact (in the abelian category of sheaves):
This long exact sequence now breaks up into short exact sequences of sheaves
where by exactness we have isomorphisms for all k. Each of these induces a long exact sequence in cohomology. Since the sheaf of functions on M admits partitions of unity, any -module is a fine sheaf; in particular, the sheaves are all fine. Therefore, the sheaf cohomology groups vanish for since all fine sheaves on paracompact spaces are acyclic. So the long exact cohomology sequences themselves ultimately separate into a chain of isomorphisms. At one end of the chain is the sheaf cohomology of and at the other lies the de Rham cohomology.
The de Rham cohomology has inspired many mathematical ideas, including Dolbeault cohomology, Hodge theory, and the Atiyah–Singer index theorem. However, even in more classical contexts, the theorem has inspired a number of developments. Firstly, the Hodge theory proves that there is an isomorphism between the cohomology consisting of harmonic forms and the de Rham cohomology consisting of closed forms modulo exact forms. This relies on an appropriate definition of harmonic forms and of the Hodge theorem. For further details see Hodge theory.
If M is a compact Riemannian manifold, then each equivalence class in contains exactly one harmonic form. That is, every member of a given equivalence class of closed forms can be written as
where is exact and is harmonic: .
Any harmonic function on a compact connected Riemannian manifold is a constant. Thus, this particular representative element can be understood to be an extremum (a minimum) of all cohomologously equivalent forms on the manifold. For example, on a 2-torus, one may envision a constant 1-form as one where all of the "hair" is combed neatly in the same direction (and all of the "hair" having the same length). In this case, there are two cohomologically distinct combings; all of the others are linear combinations. In particular, this implies that the 1st Betti number of a 2-torus is two. More generally, on an -dimensional torus , one can consider the various combings of -forms on the torus. There are choose such combings that can be used to form the basis vectors for ; the -th Betti number for the de Rham cohomology group for the -torus is thus choose .
More precisely, for a differential manifold M, one may equip it with some auxiliary Riemannian metric. Then the Laplacian is defined by
with the exterior derivative and the codifferential. The Laplacian is a homogeneous (in grading) linear differential operator acting upon the exterior algebra of differential forms: we can look at its action on each component of degree separately.
If is compact and oriented, the dimension of the kernel of the Laplacian acting upon the space of k-forms is then equal (by Hodge theory) to that of the de Rham cohomology group in degree : the Laplacian picks out a unique harmonicform in each cohomology class of closed forms. In particular, the space of all harmonic -forms on is isomorphic to The dimension of each such space is finite, and is given by the -th Betti number.
Let be a compact oriented Riemannian manifold. The Hodge decomposition states that any -form on uniquely splits into the sum of three L2 components:
where is exact, is co-exact, and is harmonic.
One says that a form is co-closed if and co-exact if for some form , and that is harmonic if the Laplacian is zero, . This follows by noting that exact and co-exact forms are orthogonal; the orthogonal complement then consists of forms that are both closed and co-closed: that is, of harmonic forms. Here, orthogonality is defined with respect to the L2 inner product on :
By use of Sobolev spaces or distributions, the decomposition can be extended for example to a complete (oriented or not) Riemannian manifold. [6]
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.
In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.
In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero, and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the image of d, and a closed form is in the kernel of d.
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.
In mathematics, the Poincaré lemma gives a sufficient condition for a closed differential form to be exact. Precisely, it states that every closed p-form on an open ball in Rn is exact for p with 1 ≤ p ≤ n. The lemma was introduced by Henri Poincaré in 1886.
In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.
In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.
In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.
In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg to coefficients in an arbitrary Lie module.
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
In mathematics, cohomology with compact support refers to certain cohomology theories, usually with some condition requiring that cocycles should have compact support.
In mathematics, a vector bundle is said to be flat if it is endowed with a linear connection with vanishing curvature, i.e. a flat connection.
In differential geometry, the integration along fibers of a k-form yields a -form where m is the dimension of the fiber, via "integration". It is also called the fiber integration.
In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.
In complex geometry, the lemma is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .
In complex geometry, the Kähler identities are a collection of identities between operators on a Kähler manifold relating the Dolbeault operators and their adjoints, contraction and wedge operators of the Kähler form, and the Laplacians of the Kähler metric. The Kähler identities combine with results of Hodge theory to produce a number of relations on de Rham and Dolbeault cohomology of compact Kähler manifolds, such as the Lefschetz hyperplane theorem, the hard Lefschetz theorem, the Hodge-Riemann bilinear relations, and the Hodge index theorem. They are also, again combined with Hodge theory, important in proving fundamental analytical results on Kähler manifolds, such as the -lemma, the Nakano inequalities, and the Kodaira vanishing theorem.
In mathematics, more specifically in differential geometry, the de Rham theorem says that the ring homomorphism from the de Rham cohomology to the singular cohomology given by integration is an isomorphism.