In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.
The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(n)-structure defines a Riemannian metric, and for the special linear group an SL(n,R)-structure is the same as a volume form. For the trivial group, an {e}-structure consists of an absolute parallelism of the manifold.
Generalising this idea to arbitrary principal bundles on topological spaces, one can ask if a principal -bundle over a group "comes from" a subgroup of . This is called reduction of the structure group (to ).
Several structures on manifolds, such as a complex structure, a symplectic structure, or a Kähler structure, are G-structures with an additional integrability condition.
One can ask if a principal -bundle over a group "comes from" a subgroup of . This is called reduction of the structure group (to ), and makes sense for any map , which need not be an inclusion map (despite the terminology).
In the following, let be a topological space, topological groups and a group homomorphism .
Given a principal -bundle over , a reduction of the structure group (from to ) is a -bundle and an isomorphism of the associated bundle to the original bundle.
Given a map , where is the classifying space for -bundles, a reduction of the structure group is a map and a homotopy .
Reductions of the structure group do not always exist. If they exist, they are usually not essentially unique, since the isomorphism is an important part of the data.
As a concrete example, every even-dimensional real vector space is isomorphic to the underlying real space of a complex vector space: it admits a linear complex structure. A real vector bundle admits an almost complex structure if and only if it is isomorphic to the underlying real bundle of a complex vector bundle. This is then a reduction along the inclusion GL(n,C) → GL(2n,R)
In terms of transition maps, a G-bundle can be reduced if and only if the transition maps can be taken to have values in H. Note that the term reduction is misleading: it suggests that H is a subgroup of G, which is often the case, but need not be (for example for spin structures): it's properly called a lifting.
More abstractly, "G-bundles over X" is a functor [2] in G: Given a Lie group homomorphism H → G, one gets a map from H-bundles to G-bundles by inducing (as above). Reduction of the structure group of a G-bundle B is choosing an H-bundle whose image is B.
The inducing map from H-bundles to G-bundles is in general neither onto nor one-to-one, so the structure group cannot always be reduced, and when it can, this reduction need not be unique. For example, not every manifold is orientable, and those that are orientable admit exactly two orientations.
If H is a closed subgroup of G, then there is a natural one-to-one correspondence between reductions of a G-bundle B to H and global sections of the fiber bundle B/H obtained by quotienting B by the right action of H. Specifically, the fibration B → B/H is a principal H-bundle over B/H. If σ : X → B/H is a section, then the pullback bundle BH = σ−1B is a reduction of B. [3]
Every vector bundle of dimension has a canonical -bundle, the frame bundle. In particular, every smooth manifold has a canonical vector bundle, the tangent bundle. For a Lie group and a group homomorphism , a -structure is a reduction of the structure group of the frame bundle to .
The following examples are defined for real vector bundles, particularly the tangent bundle of a smooth manifold.
Group homomorphism | Group | -structure | Obstruction |
---|---|---|---|
General linear group of positive determinant | Orientation | Bundle must be orientable | |
Special linear group | Volume form | Bundle must be orientable ( is a deformation retract) | |
Determinant | Pseudo-volume form | Always possible | |
Orthogonal group | Riemannian metric | Always possible ( is the maximal compact subgroup, so the inclusion is a deformation retract) | |
Indefinite orthogonal group | Pseudo-Riemannian metric | Topological obstruction [4] | |
Complex general linear group | Almost complex structure | Topological obstruction | |
| almost quaternionic structure [5] | Topological obstruction [5] | |
General linear group | Decomposition as a Whitney sum (direct sum) of sub-bundles of rank and . | Topological obstruction |
Some -structures are defined terms of others: Given a Riemannian metric on an oriented manifold, a -structure for the 2-fold cover is a spin structure. (Note that the group homomorphism here is not an inclusion.)
Although the theory of principal bundles plays an important role in the study of G-structures, the two notions are different. A G-structure is a principal subbundle of the tangent frame bundle, but the fact that the G-structure bundle consists of tangent frames is regarded as part of the data. For example, consider two Riemannian metrics on Rn. The associated O(n)-structures are isomorphic if and only if the metrics are isometric. But, since Rn is contractible, the underlying O(n)-bundles are always going to be isomorphic as principal bundles because the only bundles over contractible spaces are trivial bundles.
This fundamental difference between the two theories can be captured by giving an additional piece of data on the underlying G-bundle of a G-structure: the solder form . The solder form is what ties the underlying principal bundle of the G-structure to the local geometry of the manifold itself by specifying a canonical isomorphism of the tangent bundle of M to an associated vector bundle. Although the solder form is not a connection form, it can sometimes be regarded as a precursor to one.
In detail, suppose that Q is the principal bundle of a G-structure. If Q is realized as a reduction of the frame bundle of M, then the solder form is given by the pullback of the tautological form of the frame bundle along the inclusion. Abstractly, if one regards Q as a principal bundle independently of its realization as a reduction of the frame bundle, then the solder form consists of a representation ρ of G on Rn and an isomorphism of bundles θ : TM→Q×ρRn.
Several structures on manifolds, such as a complex structure, a symplectic structure, or a Kähler structure, are G-structures (and thus can be obstructed), but need to satisfy an additional integrability condition. Without the corresponding integrability condition, the structure is instead called an "almost" structure, as in an almost complex structure, an almost symplectic structure, or an almost Kähler structure.
Specifically, a symplectic manifold structure is a stronger concept than a G-structure for the symplectic group. A symplectic structure on a manifold is a 2-form ω on M that is non-degenerate (which is an -structure, or almost symplectic structure), together with the extra condition that dω = 0; this latter is called an integrability condition.
Similarly, foliations correspond to G-structures coming from block matrices, together with integrability conditions so that the Frobenius theorem applies.
A flat G-structure is a G-structure P having a global section (V1,...,Vn) consisting of commuting vector fields. A G-structure is integrable (or locally flat) if it is locally isomorphic to a flat G-structure.
The set of diffeomorphisms of M that preserve a G-structure is called the automorphism group of that structure. For an O(n)-structure they are the group of isometries of the Riemannian metric and for an SL(n,R)-structure volume preserving maps.
Let P be a G-structure on a manifold M, and Q a G-structure on a manifold N. Then an isomorphism of the G-structures is a diffeomorphism f : M→N such that the pushforward of linear frames f* : FM→FN restricts to give a mapping of P into Q. (Note that it is sufficient that Q be contained within the image of f*.) The G-structures P and Q are locally isomorphic if M admits a covering by open sets U and a family of diffeomorphisms fU : U→f(U) ⊂N such that fU induces an isomorphism of P|U→Q|f(U).
An automorphism of a G-structure is an isomorphism of a G-structure P with itself. Automorphisms arise frequently [6] in the study of transformation groups of geometric structures, since many of the important geometric structures on a manifold can be realized as G-structures.
A wide class of equivalence problems can be formulated in the language of G-structures. For example, a pair of Riemannian manifolds are (locally) equivalent if and only if their bundles of orthonormal frames are (locally) isomorphic G-structures. In this view, the general procedure for solving an equivalence problem is to construct a system of invariants for the G-structure which are then sufficient to determine whether a pair of G-structures are locally isomorphic or not.
Let Q be a G-structure on M. A principal connection on the principal bundle Q induces a connection on any associated vector bundle: in particular on the tangent bundle. A linear connection ∇ on TM arising in this way is said to be compatible with Q. Connections compatible with Q are also called adapted connections.
Concretely speaking, adapted connections can be understood in terms of a moving frame. [7] Suppose that Vi is a basis of local sections of TM (i.e., a frame on M) which defines a section of Q. Any connection ∇ determines a system of basis-dependent 1-forms ω via
where, as a matrix of 1-forms, ω∈Ω1(M)⊗gl(n). An adapted connection is one for which ω takes its values in the Lie algebra g of G.
Associated to any G-structure is a notion of torsion, related to the torsion of a connection. Note that a given G-structure may admit many different compatible connections which in turn can have different torsions, but in spite of this it is possible to give an independent notion of torsion of the G-structure as follows. [8]
The difference of two adapted connections is a 1-form on M with values in the adjoint bundle AdQ. That is to say, the space AQ of adapted connections is an affine space for Ω1(AdQ).
The torsion of an adapted connection defines a map
to 2-forms with coefficients in TM. This map is linear; its linearization
is called the algebraic torsion map. Given two adapted connections ∇ and ∇′, their torsion tensors T∇, T∇′ differ by τ(∇−∇′). Therefore, the image of T∇ in coker(τ) is independent from the choice of ∇.
The image of T∇ in coker(τ) for any adapted connection ∇ is called the torsion of the G-structure. A G-structure is said to be torsion-free if its torsion vanishes. This happens precisely when Q admits a torsion-free adapted connection.
An example of a G-structure is an almost complex structure, that is, a reduction of a structure group of an even-dimensional manifold to GL(n,C). Such a reduction is uniquely determined by a C∞-linear endomorphism J∈ End(TM) such that J2 = −1. In this situation, the torsion can be computed explicitly as follows.
An easy dimension count shows that
where Ω2,0(TM) is a space of forms B∈Ω2(TM) which satisfy
Therefore, the torsion of an almost complex structure can be considered as an element in Ω2,0(TM). It is easy to check that the torsion of an almost complex structure is equal to its Nijenhuis tensor.
Imposing integrability conditions on a particular G-structure (for instance, with the case of a symplectic form) can be dealt with via the process of prolongation. In such cases, the prolonged G-structure cannot be identified with a G-subbundle of the bundle of linear frames. In many cases, however, the prolongation is a principal bundle in its own right, and its structure group can be identified with a subgroup of a higher-order jet group. In which case, it is called a higher order G-structure [Kobayashi]. In general, Cartan's equivalence method applies to such cases.
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.
In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
In mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle (where k is the rank of E).
In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.
In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.
In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G.
In mathematics, an almost complex manifold is a smooth manifold equipped with a smooth linear complex structure on each tangent space. Every complex manifold is an almost complex manifold, but there are almost complex manifolds that are not complex manifolds. Almost complex structures have important applications in symplectic geometry.
In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.
In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.
In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.
In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.
In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.
In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure.
In mathematics, the vertical bundle and the horizontal bundle are vector bundles associated to a smooth fiber bundle. More precisely, given a smooth fiber bundle , the vertical bundle and horizontal bundle are subbundles of the tangent bundle of whose Whitney sum satisfies . This means that, over each point , the fibers and form complementary subspaces of the tangent space . The vertical bundle consists of all vectors that are tangent to the fibers, while the horizontal bundle requires some choice of complementary subbundle.
In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the geodesic torsion describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".
In differential geometry, an Ehresmann connection is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does not rely on the possible vector bundle structure of the underlying fiber bundle, but nevertheless, linear connections may be viewed as a special case. Another important special case of Ehresmann connections are principal connections on principal bundles, which are required to be equivariant in the principal Lie group action.
In mathematics, more precisely in differential geometry, a soldering of a fiber bundle to a smooth manifold is a manner of attaching the fibers to the manifold in such a way that they can be regarded as tangent. Intuitively, soldering expresses in abstract terms the idea that a manifold may have a point of contact with a certain model Klein geometry at each point. In extrinsic differential geometry, the soldering is simply expressed by the tangency of the model space to the manifold. In intrinsic geometry, other techniques are needed to express it. Soldering was introduced in this general form by Charles Ehresmann in 1950.
In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.
In differential geometry, a quaternionic manifold is a quaternionic analog of a complex manifold. The definition is more complicated and technical than the one for complex manifolds due in part to the noncommutativity of the quaternions and in part to the lack of a suitable calculus of holomorphic functions for quaternions. The most succinct definition uses the language of G-structures on a manifold. Specifically, a quaternionic n-manifold can be defined as a smooth manifold of real dimension 4n equipped with a torsion-free -structure. More naïve, but straightforward, definitions lead to a dearth of examples, and exclude spaces like quaternionic projective space which should clearly be considered as quaternionic manifolds.
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.