In mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms.
An important case of vector-valued differential forms are Lie algebra-valued forms. (A connection form is an example of such a form.)
Let M be a smooth manifold and E → M be a smooth vector bundle over M. We denote the space of smooth sections of a bundle E by Γ(E). An E-valued differential form of degree p is a smooth section of the tensor product bundle of E with Λp(T ∗M), the p-th exterior power of the cotangent bundle of M. The space of such forms is denoted by
Because Γ is a strong monoidal functor, [1] this can also be interpreted as
where the latter two tensor products are the tensor product of modules over the ring Ω0(M) of smooth R-valued functions on M (see the seventh example here). By convention, an E-valued 0-form is just a section of the bundle E. That is,
Equivalently, an E-valued differential form can be defined as a bundle morphism
which is totally skew-symmetric.
Let V be a fixed vector space. A V-valued differential form of degree p is a differential form of degree p with values in the trivial bundle M×V. The space of such forms is denoted Ωp(M, V). When V = R one recovers the definition of an ordinary differential form. If V is finite-dimensional, then one can show that the natural homomorphism
where the first tensor product is of vector spaces over R, is an isomorphism. [2]
One can define the pullback of vector-valued forms by smooth maps just as for ordinary forms. The pullback of an E-valued form on N by a smooth map φ : M → N is an (φ*E)-valued form on M, where φ*E is the pullback bundle of E by φ.
The formula is given just as in the ordinary case. For any E-valued p-form ω on N the pullback φ*ω is given by
Just as for ordinary differential forms, one can define a wedge product of vector-valued forms. The wedge product of an E1-valued p-form with an E2-valued q-form is naturally an (E1⊗E2)-valued (p+q)-form:
The definition is just as for ordinary forms with the exception that real multiplication is replaced with the tensor product:
In particular, the wedge product of an ordinary (R-valued) p-form with an E-valued q-form is naturally an E-valued (p+q)-form (since the tensor product of E with the trivial bundle M×R is naturally isomorphic to E). For ω ∈ Ωp(M) and η ∈ Ωq(M, E) one has the usual commutativity relation:
In general, the wedge product of two E-valued forms is not another E-valued form, but rather an (E⊗E)-valued form. However, if E is an algebra bundle (i.e. a bundle of algebras rather than just vector spaces) one can compose with multiplication in E to obtain an E-valued form. If E is a bundle of commutative, associative algebras then, with this modified wedge product, the set of all E-valued differential forms
becomes a graded-commutative associative algebra. If the fibers of E are not commutative then Ω(M,E) will not be graded-commutative.
For any vector space V there is a natural exterior derivative on the space of V-valued forms. This is just the ordinary exterior derivative acting component-wise relative to any basis of V. Explicitly, if {eα} is a basis for V then the differential of a V-valued p-form ω = ωαeα is given by
The exterior derivative on V-valued forms is completely characterized by the usual relations:
More generally, the above remarks apply to E-valued forms where E is any flat vector bundle over M (i.e. a vector bundle whose transition functions are constant). The exterior derivative is defined as above on any local trivialization of E.
If E is not flat then there is no natural notion of an exterior derivative acting on E-valued forms. What is needed is a choice of connection on E. A connection on E is a linear differential operator taking sections of E to E-valued one forms:
If E is equipped with a connection ∇ then there is a unique covariant exterior derivative
extending ∇. The covariant exterior derivative is characterized by linearity and the equation
where ω is a E-valued p-form and η is an ordinary q-form. In general, one need not have d∇2 = 0. In fact, this happens if and only if the connection ∇ is flat (i.e. has vanishing curvature).
Let E → M be a smooth vector bundle of rank k over M and let π : F(E) → M be the (associated) frame bundle of E, which is a principal GLk(R) bundle over M. The pullback of E by π is canonically isomorphic to F(E) ×ρRk via the inverse of [u, v] →u(v), where ρ is the standard representation. Therefore, the pullback by π of an E-valued form on M determines an Rk-valued form on F(E). It is not hard to check that this pulled back form is right-equivariant with respect to the natural action of GLk(R) on F(E) ×Rk and vanishes on vertical vectors (tangent vectors to F(E) which lie in the kernel of dπ). Such vector-valued forms on F(E) are important enough to warrant special terminology: they are called basic or tensorial forms on F(E).
Let π : P → M be a (smooth) principal G-bundle and let V be a fixed vector space together with a representation ρ : G → GL(V). A basic or tensorial form on P of type ρ is a V-valued form ω on P that is equivariant and horizontal in the sense that
Here Rg denotes the right action of G on P for some g ∈ G. Note that for 0-forms the second condition is vacuously true.
Example: If ρ is the adjoint representation of G on the Lie algebra, then the connection form ω satisfies the first condition (but not the second). The associated curvature form Ω satisfies both; hence Ω is a tensorial form of adjoint type. The "difference" of two connection forms is a tensorial form.
Given P and ρ as above one can construct the associated vector bundle E = P×ρV. Tensorial q-forms on P are in a natural one-to-one correspondence with E-valued q-forms on M. As in the case of the principal bundle F(E) above, given a q-form on M with values in E, define φ on P fiberwise by, say at u,
where u is viewed as a linear isomorphism . φ is then a tensorial form of type ρ. Conversely, given a tensorial form φ of type ρ, the same formula defines an E-valued form on M (cf. the Chern–Weil homomorphism.) In particular, there is a natural isomorphism of vector spaces
Example: Let E be the tangent bundle of M. Then identity bundle map idE: E →E is an E-valued one form on M. The tautological one-form is a unique one-form on the frame bundle of E that corresponds to idE. Denoted by θ, it is a tensorial form of standard type.
Now, suppose there is a connection on P so that there is an exterior covariant differentiation D on (various) vector-valued forms on P. Through the above correspondence, D also acts on E-valued forms: define ∇ by
In particular for zero-forms,
This is exactly the covariant derivative for the connection on the vector bundle E. [3]
Siegel modular forms arise as vector-valued differential forms on Siegel modular varieties. [4]
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.
In differential geometry, the Lie derivative, named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field, along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.
In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.
In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.
In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.
In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map
In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection.
In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.
In differential geometry, a Lie-algebra-valued form is a differential form with values in a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections.
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
In differential geometry, the torsion tensor is a tensor that is associated to any affine connection. The torsion tensor is a bilinear map of two input vectors , that produces an output vector representing the displacement within a tangent space when the tangent space is developed along an infinitesimal parallelogram whose sides are . It is skew symmetric in its inputs, because developing over the parallelogram in the opposite sense produces the opposite displacement, similarly to how a screw moves in opposite ways when it is twisted in two directions.
In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.
In differential geometry, a field of mathematics, a Courant algebroid is a vector bundle together with an inner product and a compatible bracket more general than that of a Lie algebroid.
In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
A representation up to homotopy has several meanings. One of the earliest appeared in physics, in constrained Hamiltonian systems. The essential idea is lifting a non-representation on a quotient to a representation up to strong homotopy on a resolution of the quotient. As a concept in differential geometry, it generalizes the notion of representation of a Lie algebra to Lie algebroids and nontrivial vector bundles. As such, it was introduced by Abad and Crainic.
In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.