Siegel modular form

Last updated

In mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional elliptic modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular forms are Siegel modular varieties, which are basic models for what a moduli space for abelian varieties (with some extra level structure) should be and are constructed as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.

Contents

Siegel modular forms are holomorphic functions on the set of symmetric n×n matrices with positive definite imaginary part; the forms must satisfy an automorphy condition. Siegel modular forms can be thought of as multivariable modular forms, i.e. as special functions of several complex variables.

Siegel modular forms were first investigated by Carl LudwigSiegel  ( 1939 ) for the purpose of studying quadratic forms analytically. These primarily arise in various branches of number theory, such as arithmetic geometry and elliptic cohomology. Siegel modular forms have also been used in some areas of physics, such as conformal field theory and black hole thermodynamics in string theory.

Definition

Preliminaries

Let and define

the Siegel upper half-space. Define the symplectic group of level , denoted by as

where is the identity matrix. Finally, let

be a rational representation, where is a finite-dimensional complex vector space.

Siegel modular form

Given

and

define the notation

Then a holomorphic function

is a Siegel modular form of degree (sometimes called the genus), weight , and level if

for all . In the case that , we further require that be holomorphic 'at infinity'. This assumption is not necessary for due to the Koecher principle, explained below. Denote the space of weight , degree , and level Siegel modular forms by

Examples

Some methods for constructing Siegel modular forms include:

Level 1, small degree

For degree 1, the level 1 Siegel modular forms are the same as level 1 modular forms. The ring of such forms is a polynomial ring C[E4,E6] in the (degree 1) Eisenstein series E4 and E6.

For degree 2, (Igusa  1962 , 1967 ) showed that the ring of level 1 Siegel modular forms is generated by the (degree 2) Eisenstein series E4 and E6 and 3 more forms of weights 10, 12, and 35. The ideal of relations between them is generated by the square of the weight 35 form minus a certain polynomial in the others.

For degree 3, Tsuyumine (1986) described the ring of level 1 Siegel modular forms, giving a set of 34 generators.

For degree 4, the level 1 Siegel modular forms of small weights have been found. There are no cusp forms of weights 2, 4, or 6. The space of cusp forms of weight 8 is 1-dimensional, spanned by the Schottky form. The space of cusp forms of weight 10 has dimension 1, the space of cusp forms of weight 12 has dimension 2, the space of cusp forms of weight 14 has dimension 3, and the space of cusp forms of weight 16 has dimension 7 ( Poor & Yuen 2007 ).

For degree 5, the space of cusp forms has dimension 0 for weight 10, dimension 2 for weight 12. The space of forms of weight 12 has dimension 5.

For degree 6, there are no cusp forms of weights 0, 2, 4, 6, 8. The space of Siegel modular forms of weight 2 has dimension 0, and those of weights 4 or 6 both have dimension 1.

Level 1, small weight

For small weights and level 1, Duke & Imamoḡlu (1998) give the following results (for any positive degree):

Table of dimensions of spaces of level 1 Siegel modular forms

The following table combines the results above with information from Poor & Yuen (2006) and Chenevier & Lannes (2014) and Taïbi (2014).

Dimensions of spaces of level 1 Siegel cusp forms: Siegel modular forms
Weightdegree 0degree 1degree 2degree 3degree 4degree 5degree 6degree 7degree 8degree 9degree 10degree 11degree 12
01: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 1
21: 10: 00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 00: 0
41: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 1
61: 10: 10: 10: 10: 10: 10: 10: 10: 10: 00: 00: 00: 0
81: 10: 10 : 10 :11: 20: 20: 20: 20: 2
101: 10: 11: 20 : 21: 30: 31: 40: 41:0:0:
121: 11: 21: 31: 42: 62: 83: 113: 144: 182:202: 221: 231: 24
141: 10: 11: 21: 33:63: 99: 189: 27
161: 11: 22: 43: 77: 1413:2733:6083:143
181: 11: 22: 44:812:2028: 48117: 163
201: 11: 23: 56: 1122: 3376: 109486:595
221: 11: 24 : 69:1538:53186:239
241: 12: 35: 814: 22
261: 11: 25: 717: 24
281: 12: 37 : 1027: 37
301: 12: 38: 1134: 45

Koecher principle

The theorem known as the Koecher principle states that if is a Siegel modular form of weight , level 1, and degree , then is bounded on subsets of of the form

where . Corollary to this theorem is the fact that Siegel modular forms of degree have Fourier expansions and are thus holomorphic at infinity. [1]

Applications to physics

In the D1D5P system of supersymmetric black holes in string theory, the function that naturally captures the microstates of black hole entropy is a Siegel modular form. [2] In general, Siegel modular forms have been described as having the potential to describe black holes or other gravitational systems. [2]

Siegel modular forms also have uses as generating functions for families of CFT2 with increasing central charge in conformal field theory, particularly the hypothetical AdS/CFT correspondence. [3]

Related Research Articles

Riemann curvature tensor Tensor field in Riemannian geometry

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold, that measures the extent to which the metric tensor is not locally isometric to that of Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.

In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.

In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory.

In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by Hecke (1937), is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic representations.

In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field Q of rational numbers or a cyclotomic field Qn). The latter fact and its generalizations are of fundamental importance in number theory.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms.

In physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector.

In mathematics the Petersson inner product is an inner product defined on the space of entire modular forms. It was introduced by the German mathematician Hans Petersson.

In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his lost notebook. Sander Zwegers discovered that adding certain non-holomorphic functions to them turns them into harmonic weak Maass forms.

Newman–Penrose formalism Notation in general relativity

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.

In mathematics, Atkin–Lehner theory is part of the theory of modular forms describing when they arise at a given integer levelN in such a way that the theory of Hecke operators can be extended to higher levels.

In mathematics, a commutation theorem explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace. The first such result was proved by Francis Joseph Murray and John von Neumann in the 1930s and applies to the von Neumann algebra generated by a discrete group or by the dynamical system associated with a measurable transformation preserving a probability measure. Another important application is in the theory of unitary representations of unimodular locally compact groups, where the theory has been applied to the regular representation and other closely related representations. In particular this framework led to an abstract version of the Plancherel theorem for unimodular locally compact groups due to Irving Segal and Forrest Stinespring and an abstract Plancherel theorem for spherical functions associated with a Gelfand pair due to Roger Godement. Their work was put in final form in the 1950s by Jacques Dixmier as part of the theory of Hilbert algebras. It was not until the late 1960s, prompted partly by results in algebraic quantum field theory and quantum statistical mechanics due to the school of Rudolf Haag, that the more general non-tracial Tomita–Takesaki theory was developed, heralding a new era in the theory of von Neumann algebras.

In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are Eigenforms of the hyperbolic Laplace Operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to the modular forms the Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.

In mathematics, a Klingen Eisenstein series is a Siegel modular form of weight k and degree g depending on another Siegel cusp form f of weight k and degree r<g, given by a series similar to an Eisenstein series. It is a generalization of the Siegel Eisenstein series, which is the special case when the Siegel cusp form is 1. Klingen Eisenstein series is introduced by Klingen (1967).

In algebraic geometry, a level structure on a space X is an extra structure attached to X that shrinks or eliminates the automorphism group of X, by demanding automorphisms to preserve the level structure; attaching a level structure is often phrased as rigidifying the geometry of X.

In mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the Moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed. All of these generalizations are contained in .

References

  1. This was proved by Max Koecher, Zur Theorie der Modulformen n-ten Grades I, Mathematische. Zeitschrift 59 (1954), 455–466. A corresponding principle for Hilbert modular forms was apparently known earlier, after Fritz Gotzky, Uber eine zahlentheoretische Anwendung von Modulfunktionen zweier Veranderlicher, Math. Ann. 100 (1928), pp. 411-37
  2. 1 2 Belin, Alexandre; Castro, Alejandra; Gomes, João; Keller, Christoph A. (11 April 2017). "Siegel modular forms and black hole entropy". Journal of High Energy Physics. 2017 (4). arXiv: 1611.04588 . doi:10.1007/JHEP04(2017)057.
  3. Belin, Alexandre; Castro, Alejandra; Gomes, João; Keller, Christoph A. (7 November 2018). "Siegel paramodular forms and sparseness in AdS3/CFT2". Journal of High Energy Physics. 2018 (11). arXiv: 1805.09336 . doi:10.1007/JHEP11(2018)037.