Quadratic form

Last updated

In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example,

Contents

is a quadratic form in the variables x and y. The coefficients usually belong to a fixed field K, such as the real or complex numbers, and one speaks of a quadratic form over K. If K = R, and the quadratic form equals zero only when all variables are simultaneously zero, then it is a definite quadratic form; otherwise it is an isotropic quadratic form.

Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal groups), differential geometry (the Riemannian metric, the second fundamental form), differential topology (intersection forms of four-manifolds), Lie theory (the Killing form), and statistics (where the exponent of a zero-mean multivariate normal distribution has the quadratic form )

Quadratic forms are not to be confused with a quadratic equation, which has only one variable and includes terms of degree two or less. A quadratic form is one case of the more general concept of homogeneous polynomials.

Introduction

Quadratic forms are homogeneous quadratic polynomials in n variables. In the cases of one, two, and three variables they are called unary, binary , and ternary and have the following explicit form:

where a, ..., f are the coefficients. [1]

The theory of quadratic forms and methods used in their study depend in a large measure on the nature of the coefficients, which may be real or complex numbers, rational numbers, or integers. In linear algebra, analytic geometry, and in the majority of applications of quadratic forms, the coefficients are real or complex numbers. In the algebraic theory of quadratic forms, the coefficients are elements of a certain field. In the arithmetic theory of quadratic forms, the coefficients belong to a fixed commutative ring, frequently the integers Z or the p-adic integers Zp. [2] Binary quadratic forms have been extensively studied in number theory, in particular, in the theory of quadratic fields, continued fractions, and modular forms. The theory of integral quadratic forms in n variables has important applications to algebraic topology.

Using homogeneous coordinates, a non-zero quadratic form in n variables defines an (n − 2)-dimensional quadric in the (n − 1)-dimensional projective space. This is a basic construction in projective geometry. In this way one may visualize 3-dimensional real quadratic forms as conic sections. An example is given by the three-dimensional Euclidean space and the square of the Euclidean norm expressing the distance between a point with coordinates (x, y, z) and the origin:

A closely related notion with geometric overtones is a quadratic space, which is a pair (V, q), with V a vector space over a field K, and q : VK a quadratic form on V. See § Definitions below for the definition of a quadratic form on a vector space.

History

The study of quadratic forms, in particular the question of whether a given integer can be the value of a quadratic form over the integers, dates back many centuries. One such case is Fermat's theorem on sums of two squares, which determines when an integer may be expressed in the form x2 + y2, where x, y are integers. This problem is related to the problem of finding Pythagorean triples, which appeared in the second millennium BCE. [3]

In 628, the Indian mathematician Brahmagupta wrote Brāhmasphuṭasiddhānta , which includes, among many other things, a study of equations of the form x2ny2 = c. He considered what is now called Pell's equation, x2ny2 = 1, and found a method for its solution. [4] In Europe this problem was studied by Brouncker, Euler and Lagrange.

In 1801 Gauss published Disquisitiones Arithmeticae, a major portion of which was devoted to a complete theory of binary quadratic forms over the integers. Since then, the concept has been generalized, and the connections with quadratic number fields, the modular group, and other areas of mathematics have been further elucidated.

Associated symmetric matrix

Any n × n matrix A determines a quadratic form qA in n variables by

where A = (aij).

Example

Consider the case of quadratic forms in three variables x, y, z. The matrix A has the form

The above formula gives

So, two different matrices define the same quadratic form if and only if they have the same elements on the diagonal and the same values for the sums b + d, c + g and f + h. In particular, the quadratic form qA is defined by a unique symmetric matrix

This generalizes to any number of variables as follows.

General case

Given a quadratic form qA, defined by the matrix A = (aij), the matrix

is symmetric, defines the same quadratic form as A, and is the unique symmetric matrix that defines qA.

So, over the real numbers (and, more generally, over a field of characteristic different from two), there is a one-to-one correspondence between quadratic forms and symmetric matrices that determine them.

Real quadratic forms

A fundamental problem is the classification of real quadratic forms under a linear change of variables.

Jacobi proved that, for every real quadratic form, there is an orthogonal diagonalization; that is, an orthogonal change of variables that puts the quadratic form in a "diagonal form"

where the associated symmetric matrix is diagonal. Moreover, the coefficients λ1, λ2, ..., λn are determined uniquely up to a permutation. [5]

If the change of variables is given by an invertible matrix that is not necessarily orthogonal, one can suppose that all coefficients λi are 0, 1, or −1. Sylvester's law of inertia states that the numbers of each 1 and −1 are invariants of the quadratic form, in the sense that any other diagonalization will contain the same number of each. The signature of the quadratic form is the triple (n0, n+, n), where n0 is the number of 0s and n± is the number of ±1s. Sylvester's law of inertia shows that this is a well-defined quantity attached to the quadratic form.

The case when all λi have the same sign is especially important: in this case the quadratic form is called positive definite (all 1) or negative definite (all −1). If none of the terms are 0, then the form is called nondegenerate; this includes positive definite, negative definite, and isotropic quadratic form (a mix of 1 and −1); equivalently, a nondegenerate quadratic form is one whose associated symmetric form is a nondegenerate bilinear form. A real vector space with an indefinite nondegenerate quadratic form of index (p, q) (denoting p 1s and q −1s) is often denoted as Rp,q particularly in the physical theory of spacetime.

The discriminant of a quadratic form, concretely the class of the determinant of a representing matrix in K / (K×)2 (up to non-zero squares) can also be defined, and for a real quadratic form is a cruder invariant than signature, taking values of only "positive, zero, or negative". Zero corresponds to degenerate, while for a non-degenerate form it is the parity of the number of negative coefficients, (−1)n.

These results are reformulated in a different way below.

Let q be a quadratic form defined on an n-dimensional real vector space. Let A be the matrix of the quadratic form q in a given basis. This means that A is a symmetric n × n matrix such that

where x is the column vector of coordinates of v in the chosen basis. Under a change of basis, the column x is multiplied on the left by an n × n invertible matrix S, and the symmetric square matrix A is transformed into another symmetric square matrix B of the same size according to the formula

Any symmetric matrix A can be transformed into a diagonal matrix

by a suitable choice of an orthogonal matrix S, and the diagonal entries of B are uniquely determined – this is Jacobi's theorem. If S is allowed to be any invertible matrix then B can be made to have only 0, 1, and −1 on the diagonal, and the number of the entries of each type (n0 for 0, n+ for 1, and n for −1) depends only on A. This is one of the formulations of Sylvester's law of inertia and the numbers n+ and n are called the positive and negativeindices of inertia. Although their definition involved a choice of basis and consideration of the corresponding real symmetric matrix A, Sylvester's law of inertia means that they are invariants of the quadratic form q.

The quadratic form q is positive definite if q(v) > 0 (similarly, negative definite if q(v) < 0) for every nonzero vector v. [6] When q(v) assumes both positive and negative values, q is an isotropic quadratic form. The theorems of Jacobi and Sylvester show that any positive definite quadratic form in n variables can be brought to the sum of n squares by a suitable invertible linear transformation: geometrically, there is only one positive definite real quadratic form of every dimension. Its isometry group is a compact orthogonal group O(n). This stands in contrast with the case of isotropic forms, when the corresponding group, the indefinite orthogonal group O(p, q), is non-compact. Further, the isometry groups of Q and Q are the same (O(p, q) ≈ O(q, p)), but the associated Clifford algebras (and hence pin groups) are different.

Definitions

A quadratic form over a field K is a map q : VK from a finite-dimensional K-vector space to K such that q(av) = a2q(v) for all aK, vV and the function q(u + v) − q(u) − q(v) is bilinear.

More concretely, an n-ary quadratic form over a field K is a homogeneous polynomial of degree 2 in n variables with coefficients in K:

This formula may be rewritten using matrices: let x be the column vector with components x1, ..., xn and A = (aij) be the n × n matrix over K whose entries are the coefficients of q. Then

A vector v = (x1, ..., xn) is a null vector if q(v) = 0.

Two n-ary quadratic forms φ and ψ over K are equivalent if there exists a nonsingular linear transformation CGL(n, K) such that

Let the characteristic of K be different from 2. [7] The coefficient matrix A of q may be replaced by the symmetric matrix (A + AT)/2 with the same quadratic form, so it may be assumed from the outset that A is symmetric. Moreover, a symmetric matrix A is uniquely determined by the corresponding quadratic form. Under an equivalence C, the symmetric matrix A of φ and the symmetric matrix B of ψ are related as follows:

The associated bilinear form of a quadratic form q is defined by

Thus, bq is a symmetric bilinear form over K with matrix A. Conversely, any symmetric bilinear form b defines a quadratic form

and these two processes are the inverses of each other. As a consequence, over a field of characteristic not equal to 2, the theories of symmetric bilinear forms and of quadratic forms in n variables are essentially the same.

Quadratic space

Given an n-dimensional vector space V over a field K, a quadratic form on V is a function Q : VK that has the following property: for some basis, the function q that maps the coordinates of vV to Q(v) is a quadratic form. In particular, if V = Kn with its standard basis, one has

The change of basis formulas show that the property of being a quadratic form does not depend on the choice of a specific basis in V, although the quadratic form q depends on the choice of the basis.

A finite-dimensional vector space with a quadratic form is called a quadratic space.

The map Q is a homogeneous function of degree 2, which means that it has the property that, for all a in K and v in V:

When the characteristic of K is not 2, the bilinear map B : V × VK over K is defined:

This bilinear form B is symmetric. That is, B(x, y) = B(y, x) for all x, y in V, and it determines Q: Q(x) = B(x, x) for all x in V.

When the characteristic of K is 2, so that 2 is not a unit, it is still possible to use a quadratic form to define a symmetric bilinear form B′(x, y) = Q(x + y) − Q(x) − Q(y). However, Q(x) can no longer be recovered from this B in the same way, since B′(x, x) = 0 for all x (and is thus alternating). [8] Alternatively, there always exists a bilinear form B (not in general either unique or symmetric) such that B″(x, x) = Q(x).

The pair (V, Q) consisting of a finite-dimensional vector space V over K and a quadratic map Q from V to K is called a quadratic space, and B as defined here is the associated symmetric bilinear form of Q. The notion of a quadratic space is a coordinate-free version of the notion of quadratic form. Sometimes, Q is also called a quadratic form.

Two n-dimensional quadratic spaces (V, Q) and (V′, Q′) are isometric if there exists an invertible linear transformation T : VV (isometry) such that

The isometry classes of n-dimensional quadratic spaces over K correspond to the equivalence classes of n-ary quadratic forms over K.

Generalization

Let R be a commutative ring, M be an R-module, and b : M × MR be an R-bilinear form. [9] A mapping q : MR : vb(v, v) is the associated quadratic form of b, and B : M × MR : (u, v) ↦ q(u + v) − q(u) − q(v) is the polar form of q.

A quadratic form q : MR may be characterized in the following equivalent ways:

Two elements v and w of V are called orthogonal if B(v, w) = 0. The kernel of a bilinear form B consists of the elements that are orthogonal to every element of V. Q is non-singular if the kernel of its associated bilinear form is {0}. If there exists a non-zero v in V such that Q(v) = 0, the quadratic form Q is isotropic , otherwise it is anisotropic. This terminology also applies to vectors and subspaces of a quadratic space. If the restriction of Q to a subspace U of V is identically zero, then U is totally singular.

The orthogonal group of a non-singular quadratic form Q is the group of the linear automorphisms of V that preserve Q: that is, the group of isometries of (V, Q) into itself.

If a quadratic space (A, Q) has a product so that A is an algebra over a field, and satisfies

then it is a composition algebra.

Equivalence of forms

Every quadratic form q in n variables over a field of characteristic not equal to 2 is equivalent to a diagonal form

Such a diagonal form is often denoted by a1, ..., an. Classification of all quadratic forms up to equivalence can thus be reduced to the case of diagonal forms.

Geometric meaning

Using Cartesian coordinates in three dimensions, let x = (x, y, z)T, and let A be a symmetric 3-by-3 matrix. Then the geometric nature of the solution set of the equation xTAx + bTx = 1 depends on the eigenvalues of the matrix A.

If all eigenvalues of A are non-zero, then the solution set is an ellipsoid or a hyperboloid.[ citation needed ] If all the eigenvalues are positive, then it is an ellipsoid; if all the eigenvalues are negative, then it is an imaginary ellipsoid (we get the equation of an ellipsoid but with imaginary radii); if some eigenvalues are positive and some are negative, then it is a hyperboloid.

If there exist one or more eigenvalues λi = 0, then the shape depends on the corresponding bi. If the corresponding bi ≠ 0, then the solution set is a paraboloid (either elliptic or hyperbolic); if the corresponding bi = 0, then the dimension i degenerates and does not come into play, and the geometric meaning will be determined by other eigenvalues and other components of b. When the solution set is a paraboloid, whether it is elliptic or hyperbolic is determined by whether all other non-zero eigenvalues are of the same sign: if they are, then it is elliptic; otherwise, it is hyperbolic.

Integral quadratic forms

Quadratic forms over the ring of integers are called integral quadratic forms, whereas the corresponding modules are quadratic lattices (sometimes, simply lattices). They play an important role in number theory and topology.

An integral quadratic form has integer coefficients, such as x2 + xy + y2; equivalently, given a lattice Λ in a vector space V (over a field with characteristic 0, such as Q or R), a quadratic form Q is integral with respect toΛ if and only if it is integer-valued on Λ, meaning Q(x, y) ∈ Z if x, y ∈ Λ.

This is the current use of the term; in the past it was sometimes used differently, as detailed below.

Historical use

Historically there was some confusion and controversy over whether the notion of integral quadratic form should mean:

twos in
the quadratic form associated to a symmetric matrix with integer coefficients
twos out
a polynomial with integer coefficients (so the associated symmetric matrix may have half-integer coefficients off the diagonal)

This debate was due to the confusion of quadratic forms (represented by polynomials) and symmetric bilinear forms (represented by matrices), and "twos out" is now the accepted convention; "twos in" is instead the theory of integral symmetric bilinear forms (integral symmetric matrices).

In "twos in", binary quadratic forms are of the form ax2 + 2bxy + cy2, represented by the symmetric matrix

This is the convention Gauss uses in Disquisitiones Arithmeticae .

In "twos out", binary quadratic forms are of the form ax2 + bxy + cy2, represented by the symmetric matrix

Several points of view mean that twos out has been adopted as the standard convention. Those include:

Universal quadratic forms

An integral quadratic form whose image consists of all the positive integers is sometimes called universal. Lagrange's four-square theorem shows that w2 + x2 + y2 + z2 is universal. Ramanujan generalized this aw2 + bx2 + cy2 + dz2 and found 54 multisets {a, b, c, d} that can each generate all positive integers, namely,

  • {1, 1, 1, d}, 1 ≤ d ≤ 7
  • {1, 1, 2, d}, 2 ≤ d ≤ 14
  • {1, 1, 3, d}, 3 ≤ d ≤ 6
  • {1, 2, 2, d}, 2 ≤ d ≤ 7
  • {1, 2, 3, d}, 3 ≤ d ≤ 10
  • {1, 2, 4, d}, 4 ≤ d ≤ 14
  • {1, 2, 5, d}, 6 ≤ d ≤ 10

There are also forms whose image consists of all but one of the positive integers. For example, {1, 2, 5, 5} has 15 as the exception. Recently, the 15 and 290 theorems have completely characterized universal integral quadratic forms: if all coefficients are integers, then it represents all positive integers if and only if it represents all integers up through 290; if it has an integral matrix, it represents all positive integers if and only if it represents all integers up through 15.

See also

Notes

  1. A tradition going back to Gauss dictates the use of manifestly even coefficients for the products of distinct variables, that is, 2b in place of b in binary forms and 2b, 2d, 2f in place of b, d, f in ternary forms. Both conventions occur in the literature.
  2. away from 2, that is, if 2 is invertible in the ring, quadratic forms are equivalent to symmetric bilinear forms (by the polarization identities), but at 2 they are different concepts; this distinction is particularly important for quadratic forms over the integers.
  3. Babylonian Pythagoras
  4. Brahmagupta biography
  5. Maxime Bôcher (with E.P.R. DuVal)(1907) Introduction to Higher Algebra, § 45 Reduction of a quadratic form to a sum of squares via HathiTrust
  6. If a non-strict inequality (with ≥ or ≤) holds then the quadratic form q is called semidefinite.
  7. The theory of quadratic forms over a field of characteristic 2 has important differences and many definitions and theorems must be modified.
  8. This alternating form associated with a quadratic form in characteristic 2 is of interest related to the Arf invariantIrving Kaplansky (1974), Linear Algebra and Geometry, p. 27.
  9. The bilinear form to which a quadratic form is associated is not restricted to being symmetric, which is of significance when 2 is not a unit in R.

Related Research Articles

In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

<span class="mw-page-title-main">Clifford algebra</span> Algebra based on a vector space with a quadratic form

In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As K-algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford (1845–1879).

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.

<span class="mw-page-title-main">Symmetric matrix</span> Matrix equal to its transpose

In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,

In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

<span class="mw-page-title-main">Square matrix</span> Matrix with the same number of rows and columns

In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied.

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.

<span class="mw-page-title-main">Symplectic group</span> Mathematical group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

<span class="mw-page-title-main">Unitary group</span> Group of unitary matrices

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.

In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2.

In mathematics, a bilinear form is a bilinear map V × VK on a vector space V over a field K. In other words, a bilinear form is a function B : V × VK that is linear in each argument separately:

In mathematics, the signature(v, p, r) of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix gab of the metric tensor with respect to a basis. In relativistic physics, the v represents the time or virtual dimension, and the p for the space and physical dimension. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis and thus can be used to classify the metric. The signature is often denoted by a pair of integers (v, p) implying r = 0, or as an explicit list of signs of eigenvalues such as (+, −, −, −) or (−, +, +, +) for the signatures (1, 3, 0) and (3, 1, 0), respectively.

Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of basis. Namely, if is the symmetric matrix that defines the quadratic form, and is any invertible matrix such that is diagonal, then the number of negative elements in the diagonal of is always the same, for all such ; and the same goes for the number of positive elements.

<span class="mw-page-title-main">Change of basis</span> Coordinate change in linear algebra

In mathematics, an ordered basis of a vector space of finite dimension n allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of n scalars called coordinates. If two different bases are considered, the coordinate vector that represents a vector v on one basis is, in general, different from the coordinate vector that represents v on the other basis. A change of basis consists of converting every assertion expressed in terms of coordinates relative to one basis into an assertion expressed in terms of coordinates relative to the other basis.

In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinear function that maps every pair of elements of the vector space to the underlying field such that for every and in . They are also referred to more briefly as just symmetric forms when "bilinear" is understood.

In mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature. More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields.

<span class="mw-page-title-main">Classical group</span>

In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.

In mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite.

In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras.

In mathematics, an invariant convex cone is a closed convex cone in a Lie algebra of a connected Lie group that is invariant under inner automorphisms. The study of such cones was initiated by Ernest Vinberg and Bertram Kostant.

References

Further reading