In algebra, a unit or invertible element [lower-alpha 1] of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. [1] [2] The set of units of R forms a group R× under multiplication, called the group of units or unit group of R. [lower-alpha 2] Other notations for the unit group are R∗, U(R), and E(R) (from the German term Einheit ).
Less commonly, the term unit is sometimes used to refer to the element 1 of the ring, in expressions like ring with a unit or unit ring, and also unit matrix. Because of this ambiguity, 1 is more commonly called the "unity" or the "identity" of the ring, and the phrases "ring with unity" or a "ring with identity" may be used to emphasize that one is considering a ring instead of a rng.
The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if rn = 1, then rn−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R× is not closed under addition. A nonzero ring R in which every nonzero element is a unit (that is, R× = R∖ {0}) is called a division ring (or a skew-field). A commutative division ring is called a field. For example, the unit group of the field of real numbers R is R∖ {0}.
In the ring of integers Z, the only units are 1 and −1.
In the ring Z/nZ of integers modulo n, the units are the congruence classes (mod n) represented by integers coprime to n. They constitute the multiplicative group of integers modulo n.
In the ring Z[√3] obtained by adjoining the quadratic integer √3 to Z, one has (2 + √3)(2 − √3) = 1, so 2 + √3 is a unit, and so are its powers, so Z[√3] has infinitely many units.
More generally, for the ring of integers R in a number field F, Dirichlet's unit theorem states that R× is isomorphic to the group where is the (finite, cyclic) group of roots of unity in R and n, the rank of the unit group, is where are the number of real embeddings and the number of pairs of complex embeddings of F, respectively.
This recovers the Z[√3] example: The unit group of (the ring of integers of) a real quadratic field is infinite of rank 1, since .
For a commutative ring R, the units of the polynomial ring R[x] are the polynomials such that a0 is a unit in R and the remaining coefficients are nilpotent, i.e., satisfy for some N. [4] In particular, if R is a domain (or more generally reduced), then the units of R[x] are the units of R. The units of the power series ring are the power series such that a0 is a unit in R. [5]
The unit group of the ring Mn(R) of n × n matrices over a ring R is the group GLn(R) of invertible matrices. For a commutative ring R, an element A of Mn(R) is invertible if and only if the determinant of A is invertible in R. In that case, A−1 can be given explicitly in terms of the adjugate matrix.
For elements x and y in a ring R, if is invertible, then is invertible with inverse ; [6] this formula can be guessed, but not proved, by the following calculation in a ring of noncommutative power series: See Hua's identity for similar results.
A commutative ring is a local ring if R∖R× is a maximal ideal.
As it turns out, if R∖R× is an ideal, then it is necessarily a maximal ideal and R is local since a maximal ideal is disjoint from R×.
If R is a finite field, then R× is a cyclic group of order |R| − 1.
Every ring homomorphism f : R → S induces a group homomorphism R× → S×, since f maps units to units. In fact, the formation of the unit group defines a functor from the category of rings to the category of groups. This functor has a left adjoint which is the integral group ring construction. [7]
The group scheme is isomorphic to the multiplicative group scheme over any base, so for any commutative ring R, the groups and are canonically isomorphic to U(R). Note that the functor (that is, R ↦ U(R)) is representable in the sense: for commutative rings R (this for instance follows from the aforementioned adjoint relation with the group ring construction). Explicitly this means that there is a natural bijection between the set of the ring homomorphisms and the set of unit elements of R (in contrast, represents the additive group , the forgetful functor from the category of commutative rings to the category of abelian groups).
Suppose that R is commutative. Elements r and s of R are called associate if there exists a unit u in R such that r = us; then write r ~ s. In any ring, pairs of additive inverse elements [lower-alpha 3] x and −x are associate, since any ring includes the unit −1. For example, 6 and −6 are associate in Z. In general, ~ is an equivalence relation on R.
Associatedness can also be described in terms of the action of R× on R via multiplication: Two elements of R are associate if they are in the same R×-orbit.
In an integral domain, the set of associates of a given nonzero element has the same cardinality as R×.
The equivalence relation ~ can be viewed as any one of Green's semigroup relations specialized to the multiplicative semigroup of a commutative ring R.
In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after Niels Henrik Abel.
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.
In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional. In fact, a nonempty associative quasigroup is a group.
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.
In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x in R such that ax = 0, or equivalently if the map from R to R that sends x to ax is not injective. Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y in R such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element a that is both a left and a right zero divisor is called a two-sided zero divisor. If the ring is commutative, then the left and right zero divisors are the same.
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:
In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities that these operations must satisfy.
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.
In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.
In mathematics, a formal group law is a formal power series behaving as if it were the product of a Lie group. They were introduced by S. Bochner. The term formal group sometimes means the same as formal group law, and sometimes means one of several generalizations. Formal groups are intermediate between Lie groups and Lie algebras. They are used in algebraic number theory and algebraic topology.
In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. Equivalently, a domain is a ring in which 0 is the only left zero divisor. A commutative domain is called an integral domain. Mathematical literature contains multiple variants of the definition of "domain".
In mathematics, and more specifically in abstract algebra, a rng is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity. The term rng is meant to suggest that it is a ring without i, that is, without the requirement for an identity element.
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.