Square matrix

Last updated
A square matrix of order 4. The entries
a
i
i
{\displaystyle a_{ii}}
form the main diagonal of a square matrix. For instance, the main diagonal of the 4x4 matrix above contains the elements a11 = 9, a22 = 11, a33 = 4, a44 = 10. Arbitrary square matrix.gif
A square matrix of order 4. The entries form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a11 = 9, a22 = 11, a33 = 4, a44 = 10.

In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied.

Contents

Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation. If is a row vector, the same transformation can be obtained using , where is the transpose of .

Main diagonal

The entries (i = 1, ..., n) form the main diagonal of a square matrix. They lie on the imaginary line which runs from the top left corner to the bottom right corner of the matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a11 = 9, a22 = 11, a33 = 4, a44 = 10.

The diagonal of a square matrix from the top right to the bottom left corner is called antidiagonal or counterdiagonal.

Special kinds

NameExample with n = 3
Diagonal matrix
Lower triangular matrix
Upper triangular matrix

Diagonal or triangular matrix

If all entries outside the main diagonal are zero, is called a diagonal matrix. If only all entries above (or below) the main diagonal are zero, is called an upper (or lower) triangular matrix.

Identity matrix

The identity matrix of size is the matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, e.g.

It is a square matrix of order , and also a special kind of diagonal matrix. The term identity matrix refers to the property of matrix multiplication that

for any matrix .

Invertible matrix and its inverse

A square matrix is called invertible or non-singular if there exists a matrix such that [1] [2]

If exists, it is unique and is called the inverse matrix of , denoted .

Symmetric or skew-symmetric matrix

A square matrix that is equal to its transpose, i.e., , is a symmetric matrix. If instead , then is called a skew-symmetric matrix.

For a complex square matrix , often the appropriate analogue of the transpose is the conjugate transpose , defined as the transpose of the complex conjugate of . A complex square matrix satisfying is called a Hermitian matrix. If instead , then is called a skew-Hermitian matrix.

By the spectral theorem, real symmetric (or complex Hermitian) matrices have an orthogonal (or unitary) eigenbasis; i.e., every vector is expressible as a linear combination of eigenvectors. In both cases, all eigenvalues are real. [3]

Definite matrix

Positive definite Indefinite
Q(x,y) = 1/4 x2 + y2Q(x,y) = 1/4 x2 − 1/4 y2
Ellipse in coordinate system with semi-axes labelled.svg
Points such that Q(x, y) = 1
(Ellipse).
Hyperbola2 SVG.svg
Points such that Q(x, y) = 1
(Hyperbola).

A symmetric n×n-matrix is called positive-definite (respectively negative-definite; indefinite), if for all nonzero vectors the associated quadratic form given by

takes only positive values (respectively only negative values; both some negative and some positive values). [4] If the quadratic form takes only non-negative (respectively only non-positive) values, the symmetric matrix is called positive-semidefinite (respectively negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite.

A symmetric matrix is positive-definite if and only if all its eigenvalues are positive. [5] The table at the right shows two possibilities for 2×2 matrices.

Allowing as input two different vectors instead yields the bilinear form associated to A: [6]

Orthogonal matrix

An orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors). Equivalently, a matrix A is orthogonal if its transpose is equal to its inverse:

which entails

where I is the identity matrix.

An orthogonal matrix A is necessarily invertible (with inverse A−1 = AT), unitary (A−1 = A*), and normal (A*A = AA*). The determinant of any orthogonal matrix is either +1 or −1. The special orthogonal group consists of the n × n orthogonal matrices with determinant +1.

The complex analogue of an orthogonal matrix is a unitary matrix.

Normal matrix

A real or complex square matrix is called normal if . If a real square matrix is symmetric, skew-symmetric, or orthogonal, then it is normal. If a complex square matrix is Hermitian, skew-Hermitian, or unitary, then it is normal. Normal matrices are of interest mainly because they include the types of matrices just listed and form the broadest class of matrices for which the spectral theorem holds. [7]

Operations

Trace

The trace, tr(A) of a square matrix A is the sum of its diagonal entries. While matrix multiplication is not commutative, the trace of the product of two matrices is independent of the order of the factors:

This is immediate from the definition of matrix multiplication:

Also, the trace of a matrix is equal to that of its transpose, i.e.,

Determinant

A linear transformation on
R
2
{\displaystyle \mathbb {R} ^{2}}
given by the indicated matrix. The determinant of this matrix is -1, as the area of the green parallelogram at the right is 1, but the map reverses the orientation, since it turns the counterclockwise orientation of the vectors to a clockwise one. Determinant example.svg
A linear transformation on given by the indicated matrix. The determinant of this matrix is −1, as the area of the green parallelogram at the right is 1, but the map reverses the orientation, since it turns the counterclockwise orientation of the vectors to a clockwise one.

The determinant or of a square matrix is a number encoding certain properties of the matrix. A matrix is invertible if and only if its determinant is nonzero. Its absolute value equals the area (in ) or volume (in ) of the image of the unit square (or cube), while its sign corresponds to the orientation of the corresponding linear map: the determinant is positive if and only if the orientation is preserved.

The determinant of 2×2 matrices is given by

The determinant of 3×3 matrices involves 6 terms (rule of Sarrus). The more lengthy Leibniz formula generalizes these two formulae to all dimensions. [8]

The determinant of a product of square matrices equals the product of their determinants: [9]

Adding a multiple of any row to another row, or a multiple of any column to another column, does not change the determinant. Interchanging two rows or two columns affects the determinant by multiplying it by −1. [10] Using these operations, any matrix can be transformed to a lower (or upper) triangular matrix, and for such matrices the determinant equals the product of the entries on the main diagonal; this provides a method to calculate the determinant of any matrix. Finally, the Laplace expansion expresses the determinant in terms of minors, i.e., determinants of smaller matrices. [11] This expansion can be used for a recursive definition of determinants (taking as starting case the determinant of a 1×1 matrix, which is its unique entry, or even the determinant of a 0×0 matrix, which is 1), that can be seen to be equivalent to the Leibniz formula. Determinants can be used to solve linear systems using Cramer's rule, where the division of the determinants of two related square matrices equates to the value of each of the system's variables. [12]

Eigenvalues and eigenvectors

A number λ and a non-zero vector satisfying

are called an eigenvalue and an eigenvector of , respectively. [13] [14] The number λ is an eigenvalue of an n×n-matrix A if and only if A − λIn is not invertible, which is equivalent to [15]

The polynomial pA in an indeterminate X given by evaluation of the determinant det(XInA) is called the characteristic polynomial of A. It is a monic polynomial of degree n. Therefore the polynomial equation pA(λ) = 0 has at most n different solutions, i.e., eigenvalues of the matrix. [16] They may be complex even if the entries of A are real. According to the Cayley–Hamilton theorem, pA(A) = 0, that is, the result of substituting the matrix itself into its own characteristic polynomial yields the zero matrix.

See also

Notes

  1. Brown  1991 ,Definition I.2.28
  2. Brown  1991 ,Definition I.5.13
  3. Horn&Johnson  1985 ,Theorem 2.5.6
  4. Horn&Johnson  1985 ,Chapter 7
  5. Horn&Johnson  1985 ,Theorem 7.2.1
  6. Horn&Johnson  1985 ,Example 4.0.6, p. 169
  7. Artin, Algebra, 2nd edition, Pearson, 2018, section 8.6.
  8. Brown  1991 ,Definition III.2.1
  9. Brown  1991 ,Theorem III.2.12
  10. Brown  1991 ,Corollary III.2.16
  11. Mirsky  1990 ,Theorem 1.4.1
  12. Brown  1991 ,Theorem III.3.18
  13. Eigen means "own" in German and in Dutch.
  14. Brown  1991 ,Definition III.4.1
  15. Brown  1991 ,Definition III.4.9
  16. Brown  1991 ,Corollary III.4.10

Related Research Articles

In mathematics, the determinant is a scalar value that is a certain function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism. The determinant of a product of matrices is the product of their determinants.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of

In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.

In mathematics, a complex square matrix A is normal if it commutes with its conjugate transpose A*:

<span class="mw-page-title-main">Transpose</span> Matrix operation which flips a matrix over its diagonal

In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by AT.

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

<span class="mw-page-title-main">Unitary group</span> Group of unitary matrices

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

In mathematics, a Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j:

In linear algebra, the adjugate of a square matrix A is the transpose of its cofactor matrix and is denoted by adj(A). It is also occasionally known as adjunct matrix, or "adjoint", though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

In linear algebra, an n-by-n square matrix A is called invertible if there exists an n-by-n square matrix B such that

In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation

In numerical analysis, one of the most important problems is designing efficient and stable algorithms for finding the eigenvalues of a matrix. These eigenvalue algorithms may also find eigenvectors.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

<span class="mw-page-title-main">Euler's rotation theorem</span> Movement with a fixed point is rotation

In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two rotations is also a rotation. Therefore the set of rotations has a group structure, known as a rotation group.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

<span class="mw-page-title-main">Matrix (mathematics)</span> Array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

References