Linear subspace

Last updated

In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces.

Contents

Definition

If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V. Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w1, w2 are elements of W and α, β are elements of K, it follows that αw1 + βw2 is in W. [2] [3] [4] [5] [6]

The singleton set consisting of the zero vector alone and the entire vector space itself are linear subspaces that are called the trivial subspaces of the vector space. [7]

Examples

Example I

In the vector space V = R3 (the real coordinate space over the field R of real numbers), take W to be the set of all vectors in V whose last component is 0. Then W is a subspace of V.

Proof:

  1. Given u and v in W, then they can be expressed as u = (u1, u2, 0) and v = (v1, v2, 0). Then u + v = (u1+v1, u2+v2, 0+0) = (u1+v1, u2+v2, 0). Thus, u + v is an element of W, too.
  2. Given u in W and a scalar c in R, if u = (u1, u2, 0) again, then cu = (cu1, cu2, c0) = (cu1, cu2,0). Thus, cu is an element of W too.

Example II

Let the field be R again, but now let the vector space V be the Cartesian plane R2. Take W to be the set of points (x, y) of R2 such that x = y. Then W is a subspace of R2.

Proof:

  1. Let p = (p1, p2) and q = (q1, q2) be elements of W, that is, points in the plane such that p1 = p2 and q1 = q2. Then p + q = (p1+q1, p2+q2); since p1 = p2 and q1 = q2, then p1 + q1 = p2 + q2, so p + q is an element of W.
  2. Let p = (p1, p2) be an element of W, that is, a point in the plane such that p1 = p2, and let c be a scalar in R. Then cp = (cp1, cp2); since p1 = p2, then cp1 = cp2, so cp is an element of W.

In general, any subset of the real coordinate space Rn that is defined by a homogeneous system of linear equations will yield a subspace. (The equation in example I was z = 0, and the equation in example II was x = y.)

Example III

Again take the field to be R, but now let the vector space V be the set RR of all functions from R to R. Let C(R) be the subset consisting of continuous functions. Then C(R) is a subspace of RR.

Proof:

  1. We know from calculus that 0 ∈ C(R) ⊂ RR.
  2. We know from calculus that the sum of continuous functions is continuous.
  3. Again, we know from calculus that the product of a continuous function and a number is continuous.

Example IV

Keep the same field and vector space as before, but now consider the set Diff(R) of all differentiable functions. The same sort of argument as before shows that this is a subspace too.

Examples that extend these themes are common in functional analysis.

Properties of subspaces

From the definition of vector spaces, it follows that subspaces are nonempty, and are closed under sums and under scalar multiples. [8] Equivalently, subspaces can be characterized by the property of being closed under linear combinations. That is, a nonempty set W is a subspace if and only if every linear combination of finitely many elements of W also belongs to W. The equivalent definition states that it is also equivalent to consider linear combinations of two elements at a time.

In a topological vector space X, a subspace W need not be topologically closed, but a finite-dimensional subspace is always closed. [9] The same is true for subspaces of finite codimension (i.e., subspaces determined by a finite number of continuous linear functionals).

Descriptions

Descriptions of subspaces include the solution set to a homogeneous system of linear equations, the subset of Euclidean space described by a system of homogeneous linear parametric equations, the span of a collection of vectors, and the null space, column space, and row space of a matrix. Geometrically (especially over the field of real numbers and its subfields), a subspace is a flat in an n-space that passes through the origin.

A natural description of a 1-subspace is the scalar multiplication of one non-zero vector v to all possible scalar values. 1-subspaces specified by two vectors are equal if and only if one vector can be obtained from another with scalar multiplication:

This idea is generalized for higher dimensions with linear span, but criteria for equality of k-spaces specified by sets of k vectors are not so simple.

A dual description is provided with linear functionals (usually implemented as linear equations). One non-zero linear functional F specifies its kernel subspace F = 0 of codimension 1. Subspaces of codimension 1 specified by two linear functionals are equal, if and only if one functional can be obtained from another with scalar multiplication (in the dual space):

It is generalized for higher codimensions with a system of equations. The following two subsections will present this latter description in details, and the remaining four subsections further describe the idea of linear span.

Systems of linear equations

The solution set to any homogeneous system of linear equations with n variables is a subspace in the coordinate space Kn:

For example, the set of all vectors (x, y, z) (over real or rational numbers) satisfying the equations is a one-dimensional subspace. More generally, that is to say that given a set of n independent functions, the dimension of the subspace in Kk will be the dimension of the null set of A, the composite matrix of the n functions.

Null space of a matrix

In a finite-dimensional space, a homogeneous system of linear equations can be written as a single matrix equation:

The set of solutions to this equation is known as the null space of the matrix. For example, the subspace described above is the null space of the matrix

Every subspace of Kn can be described as the null space of some matrix (see § Algorithms below for more).

Linear parametric equations

The subset of Kn described by a system of homogeneous linear parametric equations is a subspace:

For example, the set of all vectors (x, y, z) parameterized by the equations

is a two-dimensional subspace of K3, if K is a number field (such as real or rational numbers). [note 2]

Span of vectors

In linear algebra, the system of parametric equations can be written as a single vector equation:

The expression on the right is called a linear combination of the vectors (2, 5, −1) and (3, −4, 2). These two vectors are said to span the resulting subspace.

In general, a linear combination of vectors v1, v2, ... , vk is any vector of the form

The set of all possible linear combinations is called the span:

If the vectors v1, ... , vk have n components, then their span is a subspace of Kn. Geometrically, the span is the flat through the origin in n-dimensional space determined by the points v1, ... , vk.

Example
The xz-plane in R3 can be parameterized by the equations
As a subspace, the xz-plane is spanned by the vectors (1, 0, 0) and (0, 0, 1). Every vector in the xz-plane can be written as a linear combination of these two:
Geometrically, this corresponds to the fact that every point on the xz-plane can be reached from the origin by first moving some distance in the direction of (1, 0, 0) and then moving some distance in the direction of (0, 0, 1).

Column space and row space

A system of linear parametric equations in a finite-dimensional space can also be written as a single matrix equation:

In this case, the subspace consists of all possible values of the vector x. In linear algebra, this subspace is known as the column space (or image) of the matrix A. It is precisely the subspace of Kn spanned by the column vectors of A.

The row space of a matrix is the subspace spanned by its row vectors. The row space is interesting because it is the orthogonal complement of the null space (see below).

Independence, basis, and dimension

The vectors u and v are a basis for this two-dimensional subspace of R . Basis for a plane.svg
The vectors u and v are a basis for this two-dimensional subspace of R .

In general, a subspace of Kn determined by k parameters (or spanned by k vectors) has dimension k. However, there are exceptions to this rule. For example, the subspace of K3 spanned by the three vectors (1, 0, 0), (0, 0, 1), and (2, 0, 3) is just the xz-plane, with each point on the plane described by infinitely many different values of t1, t2, t3.

In general, vectors v1, ... , vk are called linearly independent if

for (t1, t2, ... , tk) ≠ (u1, u2, ... , uk). [note 3] If v1, ..., vk are linearly independent, then the coordinatest1, ..., tk for a vector in the span are uniquely determined.

A basis for a subspace S is a set of linearly independent vectors whose span is S. The number of elements in a basis is always equal to the geometric dimension of the subspace. Any spanning set for a subspace can be changed into a basis by removing redundant vectors (see § Algorithms below for more).

Example
Let S be the subspace of R4 defined by the equations
Then the vectors (2, 1, 0, 0) and (0, 0, 5, 1) are a basis for S. In particular, every vector that satisfies the above equations can be written uniquely as a linear combination of the two basis vectors:
The subspace S is two-dimensional. Geometrically, it is the plane in R4 passing through the points (0, 0, 0, 0), (2, 1, 0, 0), and (0, 0, 5, 1).

Operations and relations on subspaces

Inclusion

The set-theoretical inclusion binary relation specifies a partial order on the set of all subspaces (of any dimension).

A subspace cannot lie in any subspace of lesser dimension. If dim U = k, a finite number, and U  W, then dim W = k if and only if U = W.

Intersection

In R , the intersection of two distinct two-dimensional subspaces is one-dimensional Intersecting Planes 2.svg
In R , the intersection of two distinct two-dimensional subspaces is one-dimensional

Given subspaces U and W of a vector space V, then their intersection U  W := {v  V : v is an element of both U and W} is also a subspace of V. [10]

Proof:

  1. Let v and w be elements of U  W. Then v and w belong to both U and W. Because U is a subspace, then v + w belongs to U. Similarly, since W is a subspace, then v + w belongs to W. Thus, v + w belongs to U  W.
  2. Let v belong to U  W, and let c be a scalar. Then v belongs to both U and W. Since U and W are subspaces, cv belongs to both U and W.
  3. Since U and W are vector spaces, then 0 belongs to both sets. Thus, 0 belongs to U  W.

For every vector space V, the set {0} and V itself are subspaces of V. [11] [12]

Sum

If U and W are subspaces, their sum is the subspace [13] [14]

For example, the sum of two lines is the plane that contains them both. The dimension of the sum satisfies the inequality

Here, the minimum only occurs if one subspace is contained in the other, while the maximum is the most general case. The dimension of the intersection and the sum are related by the following equation: [15]

A set of subspaces is independent when the only intersection between any pair of subspaces is the trivial subspace. The direct sum is the sum of independent subspaces, written as . An equivalent restatement is that a direct sum is a subspace sum under the condition that every subspace contributes to the span of the sum. [16] [17] [18] [19]

The dimension of a direct sum is the same as the sum of subspaces, but may be shortened because the dimension of the trivial subspace is zero. [20]

Lattice of subspaces

The operations intersection and sum make the set of all subspaces a bounded modular lattice, where the {0} subspace, the least element, is an identity element of the sum operation, and the identical subspace V, the greatest element, is an identity element of the intersection operation.

Orthogonal complements

If is an inner product space and is a subset of , then the orthogonal complement of , denoted , is again a subspace. [21] If is finite-dimensional and is a subspace, then the dimensions of and satisfy the complementary relationship . [22] Moreover, no vector is orthogonal to itself, so and is the direct sum of and . [23] Applying orthogonal complements twice returns the original subspace: for every subspace . [24]

This operation, understood as negation (), makes the lattice of subspaces a (possibly infinite) orthocomplemented lattice (although not a distributive lattice).[ citation needed ]

In spaces with other bilinear forms, some but not all of these results still hold. In pseudo-Euclidean spaces and symplectic vector spaces, for example, orthogonal complements exist. However, these spaces may have null vectors that are orthogonal to themselves, and consequently there exist subspaces such that . As a result, this operation does not turn the lattice of subspaces into a Boolean algebra (nor a Heyting algebra).[ citation needed ]

Algorithms

Most algorithms for dealing with subspaces involve row reduction. This is the process of applying elementary row operations to a matrix, until it reaches either row echelon form or reduced row echelon form. Row reduction has the following important properties:

  1. The reduced matrix has the same null space as the original.
  2. Row reduction does not change the span of the row vectors, i.e. the reduced matrix has the same row space as the original.
  3. Row reduction does not affect the linear dependence of the column vectors.

Basis for a row space

Input An m × n matrix A.
Output A basis for the row space of A.
  1. Use elementary row operations to put A into row echelon form.
  2. The nonzero rows of the echelon form are a basis for the row space of A.

See the article on row space for an example.

If we instead put the matrix A into reduced row echelon form, then the resulting basis for the row space is uniquely determined. This provides an algorithm for checking whether two row spaces are equal and, by extension, whether two subspaces of Kn are equal.

Subspace membership

Input A basis {b1, b2, ..., bk} for a subspace S of Kn, and a vector v with n components.
Output Determines whether v is an element of S
  1. Create a (k + 1) × n matrix A whose rows are the vectors b1, ... , bk and v.
  2. Use elementary row operations to put A into row echelon form.
  3. If the echelon form has a row of zeroes, then the vectors {b1, ..., bk, v} are linearly dependent, and therefore vS.

Basis for a column space

Input An m × n matrix A
Output A basis for the column space of A
  1. Use elementary row operations to put A into row echelon form.
  2. Determine which columns of the echelon form have pivots. The corresponding columns of the original matrix are a basis for the column space.

See the article on column space for an example.

This produces a basis for the column space that is a subset of the original column vectors. It works because the columns with pivots are a basis for the column space of the echelon form, and row reduction does not change the linear dependence relationships between the columns.

Coordinates for a vector

Input A basis {b1, b2, ..., bk} for a subspace S of Kn, and a vector vS
Output Numbers t1, t2, ..., tk such that v = t1b1 + ··· + tkbk
  1. Create an augmented matrix A whose columns are b1,...,bk , with the last column being v.
  2. Use elementary row operations to put A into reduced row echelon form.
  3. Express the final column of the reduced echelon form as a linear combination of the first k columns. The coefficients used are the desired numbers t1, t2, ..., tk. (These should be precisely the first k entries in the final column of the reduced echelon form.)

If the final column of the reduced row echelon form contains a pivot, then the input vector v does not lie in S.

Basis for a null space

Input An m × n matrix A.
Output A basis for the null space of A
  1. Use elementary row operations to put A in reduced row echelon form.
  2. Using the reduced row echelon form, determine which of the variables x1, x2, ..., xn are free. Write equations for the dependent variables in terms of the free variables.
  3. For each free variable xi, choose a vector in the null space for which xi = 1 and the remaining free variables are zero. The resulting collection of vectors is a basis for the null space of A.

See the article on null space for an example.

Basis for the sum and intersection of two subspaces

Given two subspaces U and W of V, a basis of the sum and the intersection can be calculated using the Zassenhaus algorithm.

Equations for a subspace

Input A basis {b1, b2, ..., bk} for a subspace S of Kn
Output An (n  k) × n matrix whose null space is S.
  1. Create a matrix A whose rows are b1, b2, ..., bk.
  2. Use elementary row operations to put A into reduced row echelon form.
  3. Let c1, c2, ..., cn be the columns of the reduced row echelon form. For each column without a pivot, write an equation expressing the column as a linear combination of the columns with pivots.
  4. This results in a homogeneous system of nk linear equations involving the variables c1,...,cn. The (nk) × n matrix corresponding to this system is the desired matrix with nullspace S.
Example
If the reduced row echelon form of A is
then the column vectors c1, ..., c6 satisfy the equations
It follows that the row vectors of A satisfy the equations
In particular, the row vectors of A are a basis for the null space of the corresponding matrix.

See also

Notes

  1. The term linear subspace is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, linear subspaces, flats, and affine subspaces are also called linear manifolds for emphasizing that there are also manifolds.
  2. Generally, K can be any field of such characteristic that the given integer matrix has the appropriate rank in it. All fields include integers, but some integers may equal to zero in some fields.
  3. This definition is often stated differently: vectors v1, ..., vk are linearly independent if t1v1 + ··· + tkvk0 for (t1, t2, ..., tk) ≠ (0, 0, ..., 0). The two definitions are equivalent.

Citations

  1. Halmos (1974) pp. 16–17, § 10
  2. Anton (2005 , p. 155)
  3. Beauregard & Fraleigh (1973 , p. 176)
  4. Herstein (1964 , p. 132)
  5. Kreyszig (1972 , p. 200)
  6. Nering (1970 , p. 20)
  7. Hefferon (2020) p. 100, ch. 2, Definition 2.13
  8. MathWorld (2021) Subspace.
  9. DuChateau (2002) Basic facts about Hilbert Space — class notes from Colorado State University on Partial Differential Equations (M645).
  10. Nering (1970 , p. 21)
  11. Hefferon (2020) p. 100, ch. 2, Definition 2.13
  12. Nering (1970 , p. 20)
  13. Nering (1970 , p. 21)
  14. Vector space related operators.
  15. Nering (1970 , p. 22)
  16. Hefferon (2020) p. 148, ch. 2, §4.10
  17. Axler (2015) p. 21 § 1.40
  18. Katznelson & Katznelson (2008) pp. 10–11, § 1.2.5
  19. Halmos (1974) pp. 28–29, § 18
  20. Halmos (1974) pp. 30–31, § 19
  21. Axler (2015) p. 193, § 6.46
  22. Axler (2015) p. 195, § 6.50
  23. Axler (2015) p. 194, § 6.47
  24. Axler (2015) p. 195, § 6.51

Sources

Textbook

Web

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

<span class="mw-page-title-main">Linear algebra</span> Branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as:

In linear algebra, the rank of a matrix A is the dimension of the vector space generated by its columns. This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. Rank is thus a measure of the "nondegenerateness" of the system of linear equations and linear transformation encoded by A. There are multiple equivalent definitions of rank. A matrix's rank is one of its most fundamental characteristics.

<span class="mw-page-title-main">Vector space</span> Algebraic structure in linear algebra

In mathematics and physics, a vector space is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field.

<span class="mw-page-title-main">Row and column spaces</span> Vector spaces associated to a matrix

In linear algebra, the column space of a matrix A is the span of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation.

<span class="mw-page-title-main">Linear independence</span> Vectors whose linear combinations are nonzero

In the theory of vector spaces, a set of vectors is said to be linearly independent if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be linearly dependent. These concepts are central to the definition of dimension.

In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors, their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

<span class="mw-page-title-main">System of linear equations</span> Several equations of degree 1 to be solved simultaneously

In mathematics, a system of linear equations is a collection of two or more linear equations involving the same variables. For example,

<span class="mw-page-title-main">Transpose</span> Matrix operation which flips a matrix over its diagonal

In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by AT.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

In linear algebra, a matrix is in row echelon form if it can be obtained as the result of Gaussian elimination. Every matrix can be put in row echelon form by applying a sequence of elementary row operations. The term echelon comes from the French échelon, and refers to the fact that the nonzero entries of a matrix in row echelon form look like an inverted staircase.

<span class="mw-page-title-main">Rank–nullity theorem</span> In linear algebra, relation between 3 dimensions

The rank–nullity theorem is a theorem in linear algebra, which asserts:

In mathematics, the Grassmannian is a differentiable manifold that parameterizes the set of all -dimensional linear subspaces of an -dimensional vector space over a field . For example, the Grassmannian is the space of lines through the origin in , so it is the same as the projective space of one dimension lower than . When is a real or complex vector space, Grassmannians are compact smooth manifolds, of dimension . In general they have the structure of a nonsingular projective algebraic variety.

In mathematics, a bilinear form is a bilinear map V × VK on a vector space V over a field K. In other words, a bilinear form is a function B : V × VK that is linear in each argument separately:

<span class="mw-page-title-main">Projection (linear algebra)</span> Idempotent linear transformation from a vector space to itself

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any vector, it gives the same result as if it were applied once. It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in . Informally, it is called the perp, short for perpendicular complement. It is a subspace of .

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:

In linear algebra, an eigenvector or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, , of a linear transformation, , is scaled by a constant factor, , when the linear transformation is applied to it: . The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor .

In mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others.