Outermorphism

Last updated

In geometric algebra, the outermorphism of a linear function between vector spaces is a natural extension of the map to arbitrary multivectors. [1] It is the unique unital algebra homomorphism of exterior algebras whose restriction to the vector spaces is the original function. [lower-alpha 1]

Contents

Definition

Let be an -linear map from to . The extension of to an outermorphism is the unique map satisfying

for all vectors and all multivectors and , where denotes the exterior algebra over . That is, an outermorphism is a unital algebra homomorphism between exterior algebras.

The outermorphism inherits linearity properties of the original linear map. For example, we see that for scalars , and vectors , , , the outermorphism is linear over bivectors:

which extends through the axiom of distributivity over addition above to linearity over all multivectors.

Adjoint

Let be an outermorphism. We define the adjoint of to be the outermorphism that satisfies the property

for all vectors and , where is the nondegenerate symmetric bilinear form (scalar product of vectors).

This results in the property that

for all multivectors and , where is the scalar product of multivectors.

If geometric calculus is available, then the adjoint may be extracted more directly:

The above definition of adjoint is like the definition of the transpose in matrix theory. When the context is clear, the underline below the function is often omitted.

Properties

It follows from the definition at the beginning that the outermorphism of a multivector is grade-preserving: [2]

where the notation indicates the -vector part of .

Since any vector may be written as , it follows that scalars are unaffected with . [lower-alpha 2] Similarly, since there is only one pseudoscalar up to a scalar multiplier, we must have . The determinant is defined to be the proportionality factor: [3]

The underline is not necessary in this context because the determinant of a function is the same as the determinant of its adjoint. The determinant of the composition of functions is the product of the determinants:

If the determinant of a function is nonzero, then the function has an inverse given by

and so does its adjoint, with

The concepts of eigenvalues and eigenvectors may be generalized to outermorphisms. Let be a real number and let be a (nonzero) blade of grade . We say that a is an eigenblade of the function with eigenvalue if [4]

It may seem strange to consider only real eigenvalues, since in linear algebra the eigenvalues of a matrix with all real entries can have complex eigenvalues. In geometric algebra, however, the blades of different grades can exhibit a complex structure. Since both vectors and pseudovectors can act as eigenblades, they may each have a set of eigenvalues matching the degrees of freedom of the complex eigenvalues that would be found in ordinary linear algebra.

Examples

Simple maps

The identity map and the scalar projection operator are outermorphisms.

Versors

A rotation of a vector by a rotor is given by

with outermorphism

We check that this is the correct form of the outermorphism. Since rotations are built from the geometric product, which has the distributive property, they must be linear. To see that rotations are also outermorphisms, we recall that rotations preserve angles between vectors: [5]

Next, we try inputting a higher grade element and check that it is consistent with the original rotation for vectors:

Orthogonal projection operators

The orthogonal projection operator onto a blade is an outermorphism:

Nonexample – orthogonal rejection operator

In contrast to the orthogonal projection operator, the orthogonal rejection by a blade is linear but is not an outermorphism:

Nonexample – grade projection operator

An example of a multivector-valued function of multivectors that is linear but is not an outermorphism is grade projection where the grade is nonzero, for example projection onto grade 1:

Notes

  1. See particularly Exterior algebra § Functoriality.
  2. Except for the case where is the zero map, when it is required by axiom.

Citations

Related Research Articles

In quantum mechanics, bra–ket notation, or Dirac notation, is ubiquitous. The notation uses the angle brackets, "" and "", and a vertical bar "", to construct "bras" and "kets".

In mathematics, the geometric algebra (GA) of a vector space with a quadratic form is an algebra over a field, the Clifford algebra of a vector space with a quadratic form with its multiplication operation called the geometric product. The algebra elements are called multivectors, which contains both the scalars and the vector space .

Inner product space Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space or a Hausdorff pre-Hilbert space is a vector space with a binary operation called an inner product. This operation associates each pair of vectors in the space with a scalar quantity known as the inner product of the vectors, often denoted using angle brackets. Inner products allow the rigorous introduction of intuitive geometrical notions, such as the length of a vector or the angle between two vectors. They also provide the means of defining orthogonality between vectors. Inner product spaces generalize Euclidean spaces to vector spaces of any dimension, and are studied in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

Linear algebra Branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as:

Riesz representation theorem, sometimes called Riesz–Fréchet representation theorem, named after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural one as will be described next; a natural isomorphism.

In mathematics, the Cauchy–Schwarz inequality, is a useful inequality in many mathematical fields, such as linear algebra, analysis, probability theory, vector algebra and other areas. It is considered to be one of the most important inequalities in all of mathematics.

In mathematics, the dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called "the" inner product of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space.

In mathematics, an Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j:

In mathematics, the conjugate transpose of an m-by-n matrix with complex entries is the n-by-m matrix obtained from by taking the transpose and then taking the complex conjugate of each entry. It is often denoted as or .

Exterior algebra Algebraic construction used in multilinear algebra and geometry

In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors and , denoted by , is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors. The magnitude of can be interpreted as the area of the parallelogram with sides and , which in three dimensions can also be computed using the cross product of the two vectors. More generally, all parallel plane surfaces with the same orientation and area have the same bivector as a measure of their oriented area. Like the cross product, the exterior product is anticommutative, meaning that for all vectors and , but, unlike the cross product, the exterior product is associative.

Differential operator Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In mathematics, a function between two real or complex vector spaces is said to be antilinear or conjugate-linear if

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

Projection (linear algebra)

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any value, it gives the same result as if it were applied once (idempotent). It leaves its image unchanged. Though abstract, this definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

The name paravector is used for the sum of a scalar and a vector in any Clifford algebra

In multilinear algebra, a multivector, sometimes called Clifford number, is an element of the exterior algebra Λ(V) of a vector space V. This algebra is graded, associative and alternating, and consists of linear combinations of simplek-vectors of the form

In mathematics, geometric calculus extends the geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to encompass other mathematical theories including differential geometry and differential forms.

Hilbert space Mathematical generalization of Euclidean space to infinite dimensions

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is a vector space equipped with an inner product, an operation that allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used.

Gauge theory gravity (GTG) is a theory of gravitation cast in the mathematical language of geometric algebra. To those familiar with general relativity, it is highly reminiscent of the tetrad formalism although there are significant conceptual differences. Most notably, the background in GTG is flat, Minkowski spacetime. The equivalence principle is not assumed, but instead follows from the fact that the gauge covariant derivative is minimally coupled. As in general relativity, equations structurally identical to the Einstein field equations are derivable from a variational principle. A spin tensor can also be supported in a manner similar to Einstein–Cartan–Sciama–Kibble theory. GTG was first proposed by Lasenby, Doran, and Gull in 1998 as a fulfillment of partial results presented in 1993. The theory has not been widely adopted by the rest of the physics community, who have mostly opted for differential geometry approaches like that of the related gauge gravitation theory.

In the field of functional analysis, a subfield of mathematics, a dual system, dual pair, or a duality over a field is a triple consisting of two vector spaces over and a bilinear map such that for all non-zero the map is not identically and for all non-zero the map is not identically 0. The study of dual systems is called duality theory.

References