Pseudoscalar

Last updated

In linear algebra, a pseudoscalar is a quantity that behaves like a scalar, except that it changes sign under a parity inversion [1] [2] while a true scalar does not.

Contents

A pseudoscalar, when multiplied by an ordinary vector, becomes a pseudovector (or axial vector); a similar construction creates the pseudotensor. A pseudoscalar also results from any scalar product between a pseudovector and an ordinary vector. The prototypical example of a pseudoscalar is the scalar triple product, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a pseudovector.

In physics

In physics, a pseudoscalar denotes a physical quantity analogous to a scalar. Both are physical quantities which assume a single value which is invariant under proper rotations. However, under the parity transformation, pseudoscalars flip their signs while scalars do not. As reflections through a plane are the combination of a rotation with the parity transformation, pseudoscalars also change signs under reflections.

Motivation

One of the most powerful ideas in physics is that physical laws do not change when one changes the coordinate system used to describe these laws. That a pseudoscalar reverses its sign when the coordinate axes are inverted suggests that it is not the best object to describe a physical quantity. In 3D-space, quantities described by a pseudovector are anti-symmetric tensors of order 2, which are invariant under inversion. The pseudovector may be a simpler representation of that quantity, but suffers from the change of sign under inversion. Similarly, in 3D-space, the Hodge dual of a scalar is equal to a constant times the 3-dimensional Levi-Civita pseudotensor (or "permutation" pseudotensor); whereas the Hodge dual of a pseudoscalar is an anti-symmetric (pure) tensor of order three. The Levi-Civita pseudotensor is a completely anti-symmetric pseudotensor of order 3. Since the dual of the pseudoscalar is the product of two "pseudo-quantities", the resulting tensor is a true tensor, and does not change sign upon an inversion of axes. The situation is similar to the situation for pseudovectors and anti-symmetric tensors of order 2. The dual of a pseudovector is an anti-symmetric tensor of order 2 (and vice versa). The tensor is an invariant physical quantity under a coordinate inversion, while the pseudovector is not invariant.

The situation can be extended to any dimension. Generally in an n-dimensional space the Hodge dual of an order r tensor will be an anti-symmetric pseudotensor of order (nr) and vice versa. In particular, in the four-dimensional spacetime of special relativity, a pseudoscalar is the dual of a fourth-order tensor and is proportional to the four-dimensional Levi-Civita pseudotensor.

Examples

In geometric algebra

A pseudoscalar in a geometric algebra is a highest-grade element of the algebra. For example, in two dimensions there are two orthogonal basis vectors, , and the associated highest-grade basis element is

So a pseudoscalar is a multiple of e12. The element e12 squares to −1 and commutes with all even elements – behaving therefore like the imaginary scalar i in the complex numbers. It is these scalar-like properties which give rise to its name.

In this setting, a pseudoscalar changes sign under a parity inversion, since if

(e1, e2) (u1, u2)

is a change of basis representing an orthogonal transformation, then

e1e2u1u2 = ±e1e2,

where the sign depends on the determinant of the transformation. Pseudoscalars in geometric algebra thus correspond to the pseudoscalars in physics.

Related Research Articles

<span class="mw-page-title-main">Tensor</span> Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system; those components form an array, which can be thought of as a high-dimensional matrix.

Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow.

In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.

<span class="mw-page-title-main">T-symmetry</span> Time reversal symmetry in physics

T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal,

<span class="mw-page-title-main">Cross product</span> Mathematical operation on vectors in 3D space

In mathematics, the cross product or vector product is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space, and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b, is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. The units of the cross-product are the product of the units of each vector. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product.

<span class="mw-page-title-main">Pseudovector</span> Physical quantity that changes sign with improper rotation

In physics and mathematics, a pseudovector is a quantity that behaves like a vector in many situations, but its direction does not conform when the object is rigidly transformed by rotation, translation, reflection, etc. This can also happen when the orientation of the space is changed. For example, the angular momentum is a pseudovector because it is often described as a vector, but by just changing the position of reference, angular momentum can reverse direction, which is not supposed to happen with true vectors.

Multilinear algebra is the study of functions which may take multiple vector-valued arguments, return scalars and vectors, and are linear in each argument. Concepts like determinants, inner and outer products, and dual spaces emerge naturally in the mathematics of multilinear functions. Multilinear algebra is a foundational mathematical tool in engineering, machine learning, physics, and mathematics.

In mathematics, specifically linear algebra, a degenerate bilinear formf (x, y ) on a vector space V is a bilinear form such that the map from V to V (the dual space of V ) given by v ↦ (xf (x, v )) is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that

<span class="mw-page-title-main">Bivector</span> Oriented area in geometric algebra

In mathematics, a bivector or binor or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. If a scalar is considered a degree-zero quantity, and a vector is a degree-one quantity, then a bivector can be thought of as being of degree two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and quaternions in three dimensions. They can be used to generate rotations in any number of dimensions, and are a useful tool for classifying such rotations. They are also used in physics, tying together a number of otherwise unrelated quantities.

In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.

In physics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :

In physics and mathematics, a pseudotensor is usually a quantity that transforms like a tensor under an orientation-preserving coordinate transformation but additionally changes sign under an orientation-reversing coordinate transformation, which is a transformation that can be expressed as a proper rotation followed by reflection. This is a generalization of a pseudovector. To evaluate a tensor or pseudotensor sign, it has to be contracted with some vectors, as many as its rank is, belonging to the space where the rotation is made while keeping the tensor coordinates unaffected. Under improper rotation a pseudotensor and a proper tensor of the same rank will have different sign which depends on the rank being even or odd. Sometimes inversion of the axes is used as an example of an improper rotation to see the behaviour of a pseudotensor, but it works only if vector space dimensions is odd otherwise inversion is a proper rotation without an additional reflection.

The name paravector is used for the combination of a scalar and a vector in any Clifford algebra, known as geometric algebra among physicists.

In physics, scalars are physical quantities that are unaffected by changes to a vector space basis. Scalars are often accompanied by units of measurement, as in "10 cm". Examples of scalar quantities are mass, distance, charge, volume, time, speed, and the magnitude of physical vectors in general.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.

<span class="mw-page-title-main">Point reflection</span> Geometric symmetry operation

In geometry, a point reflection is a transformation of affine space in which every point is reflected across a specific fixed point. When dealing with crystal structures and in the physical sciences the terms inversion symmetry, inversion center or centrosymmetric are more commonly used.

In physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime. They occur in the relativistic spin-1/2 wave function solutions to the Dirac equation.

In the study of geometric algebras, a k-blade or a simple k-vector is a generalization of the concept of scalars and vectors to include simple bivectors, trivectors, etc. Specifically, a k-blade is a k-vector that can be expressed as the exterior product of 1-vectors, and is of gradek.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

References

  1. Zee, Anthony (2010). "II. Dirac and the Spinor II.1 The Dirac Equation § Parity". Quantum field theory in a nutshell (2nd ed.). Princeton University Press. p. 98. ISBN   978-0-691-14034-6.
  2. Weinberg, Steven (1995). "5.5 Causal Dirac Fields §5.5.57". The quantum theory of fields. Vol. 1: Foundations. Cambridge University Press. p. 228. ISBN   9780521550017.