In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations.
The standard letters to denote the Levi-Civita symbol are the Greek lower case epsilon ε or ϵ, or less commonly the Latin lower case e. Index notation allows one to display permutations in a way compatible with tensor analysis: where each index i1, i2, ..., in takes values 1, 2, ..., n. There are nn indexed values of εi1i2...in, which can be arranged into an n-dimensional array. The key defining property of the symbol is total antisymmetry in the indices. When any two indices are interchanged, equal or not, the symbol is negated:
If any two indices are equal, the symbol is zero. When all indices are unequal, we have: where p (called the parity of the permutation) is the number of pairwise interchanges of indices necessary to unscramble i1, i2, ..., in into the order 1, 2, ..., n, and the factor (−1)p is called the sign, or signature of the permutation. The value ε1 2 ... n must be defined, else the particular values of the symbol for all permutations are indeterminate. Most authors choose ε1 2 ... n = +1, which means the Levi-Civita symbol equals the sign of a permutation when the indices are all unequal. This choice is used throughout this article.
The term "n-dimensional Levi-Civita symbol" refers to the fact that the number of indices on the symbol n matches the dimensionality of the vector space in question, which may be Euclidean or non-Euclidean, for example, or Minkowski space. The values of the Levi-Civita symbol are independent of any metric tensor and coordinate system. Also, the specific term "symbol" emphasizes that it is not a tensor because of how it transforms between coordinate systems; however it can be interpreted as a tensor density.
The Levi-Civita symbol allows the determinant of a square matrix, and the cross product of two vectors in three-dimensional Euclidean space, to be expressed in Einstein index notation.
The Levi-Civita symbol is most often used in three and four dimensions, and to some extent in two dimensions, so these are given here before defining the general case.
In two dimensions, the Levi-Civita symbol is defined by: The values can be arranged into a 2 × 2 antisymmetric matrix:
Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.
In three dimensions, the Levi-Civita symbol is defined by: [3]
That is, εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an odd permutation, and 0 if any index is repeated. In three dimensions only, the cyclic permutations of (1, 2, 3) are all even permutations, similarly the anticyclic permutations are all odd permutations. This means in 3d it is sufficient to take cyclic or anticyclic permutations of (1, 2, 3) and easily obtain all the even or odd permutations.
Analogous to 2-dimensional matrices, the values of the 3-dimensional Levi-Civita symbol can be arranged into a 3 × 3 × 3 array:
where i is the depth (blue: i = 1; red: i = 2; green: i = 3), j is the row and k is the column.
Some examples:
In four dimensions, the Levi-Civita symbol is defined by:
These values can be arranged into a 4 × 4 × 4 × 4 array, although in 4 dimensions and higher this is difficult to draw.
Some examples:
More generally, in n dimensions, the Levi-Civita symbol is defined by: [4]
Thus, it is the sign of the permutation in the case of a permutation, and zero otherwise.
Using the capital pi notation Π for ordinary multiplication of numbers, an explicit expression for the symbol is:[ citation needed ] where the signum function (denoted sgn) returns the sign of its argument while discarding the absolute value if nonzero. The formula is valid for all index values, and for any n (when n = 0 or n = 1, this is the empty product). However, computing the formula above naively has a time complexity of O(n2), whereas the sign can be computed from the parity of the permutation from its disjoint cycles in only O(n log(n)) cost.
A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor.
Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems related by orthogonal transformations. However, the Levi-Civita symbol is a pseudotensor because under an orthogonal transformation of Jacobian determinant −1, for example, a reflection in an odd number of dimensions, it should acquire a minus sign if it were a tensor. As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor.
As the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector. [5]
Under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix. This implies that in coordinate frames different from the one in which the tensor was defined, its components can differ from those of the Levi-Civita symbol by an overall factor. If the frame is orthonormal, the factor will be ±1 depending on whether the orientation of the frame is the same or not. [5]
In index-free tensor notation, the Levi-Civita symbol is replaced by the concept of the Hodge dual.[ citation needed ]
Summation symbols can be eliminated by using Einstein notation, where an index repeated between two or more terms indicates summation over that index. For example,
In the following examples, Einstein notation is used.
In two dimensions, when all i, j, m, n each take the values 1 and 2: [3]
1 |
2 |
3 |
In three dimensions, when all i, j, k, m, n each take values 1, 2, and 3: [3]
4 |
5 |
6 |
The Levi-Civita symbol is related to the Kronecker delta. In three dimensions, the relationship is given by the following equations (vertical lines denote the determinant): [4]
A special case of this result occurs when one of the indices is repeated and summed over:
In Einstein notation, the duplication of the i index implies the sum on i. The previous is then denoted εijkεimn = δjmδkn − δjnδkm.
If two indices are repeated (and summed over), this further reduces to:
In n dimensions, when all i1, ...,in, j1, ..., jn take values 1, 2, ..., n:[ citation needed ]
7 |
8 |
9 |
where the exclamation mark (!) denotes the factorial, and δα...
β... is the generalized Kronecker delta. For any n, the property
follows from the facts that
The particular case of ( 8 ) with is
In general, for n dimensions, one can write the product of two Levi-Civita symbols as: Proof: Both sides change signs upon switching two indices, so without loss of generality assume . If some then left side is zero, and right side is also zero since two of its rows are equal. Similarly for . Finally, if , then both sides are 1.
For ( 1 ), both sides are antisymmetric with respect of ij and mn. We therefore only need to consider the case i ≠ j and m ≠ n. By substitution, we see that the equation holds for ε12ε12, that is, for i = m = 1 and j = n = 2. (Both sides are then one). Since the equation is antisymmetric in ij and mn, any set of values for these can be reduced to the above case (which holds). The equation thus holds for all values of ij and mn.
Using ( 1 ), we have for ( 2 )
Here we used the Einstein summation convention with i going from 1 to 2. Next, ( 3 ) follows similarly from ( 2 ).
To establish ( 5 ), notice that both sides vanish when i ≠ j. Indeed, if i ≠ j, then one can not choose m and n such that both permutation symbols on the left are nonzero. Then, with i = j fixed, there are only two ways to choose m and n from the remaining two indices. For any such indices, we have
(no summation), and the result follows.
Then ( 6 ) follows since 3! = 6 and for any distinct indices i, j, k taking values 1, 2, 3, we have
In linear algebra, the determinant of a 3 × 3 square matrix A = [aij] can be written [6]
Similarly the determinant of an n × n matrix A = [aij] can be written as [5]
where each ir should be summed over 1, ..., n, or equivalently:
where now each ir and each jr should be summed over 1, ..., n. More generally, we have the identity [5]
Let a positively oriented orthonormal basis of a vector space. If (a1, a2, a3) and (b1, b2, b3) are the coordinates of the vectors a and b in this basis, then their cross product can be written as a determinant: [5]
hence also using the Levi-Civita symbol, and more simply:
In Einstein notation, the summation symbols may be omitted, and the ith component of their cross product equals [4]
The first component is
then by cyclic permutations of 1, 2, 3 the others can be derived immediately, without explicitly calculating them from the above formulae:
From the above expression for the cross product, we have:
If c = (c1, c2, c3) is a third vector, then the triple scalar product equals
From this expression, it can be seen that the triple scalar product is antisymmetric when exchanging any pair of arguments. For example,
If F = (F1, F2, F3) is a vector field defined on some open set of as a function of position x = (x1, x2, x3) (using Cartesian coordinates). Then the ith component of the curl of F equals [4]
which follows from the cross product expression above, substituting components of the gradient vector operator (nabla).
In any arbitrary curvilinear coordinate system and even in the absence of a metric on the manifold, the Levi-Civita symbol as defined above may be considered to be a tensor density field in two different ways. It may be regarded as a contravariant tensor density of weight +1 or as a covariant tensor density of weight −1. In n dimensions using the generalized Kronecker delta, [7] [8]
Notice that these are numerically identical. In particular, the sign is the same.
On a pseudo-Riemannian manifold, one may define a coordinate-invariant covariant tensor field whose coordinate representation agrees with the Levi-Civita symbol wherever the coordinate system is such that the basis of the tangent space is orthonormal with respect to the metric and matches a selected orientation. This tensor should not be confused with the tensor density field mentioned above. The presentation in this section closely follows Carroll 2004.
The covariant Levi-Civita tensor (also known as the Riemannian volume form) in any coordinate system that matches the selected orientation is
where gab is the representation of the metric in that coordinate system. We can similarly consider a contravariant Levi-Civita tensor by raising the indices with the metric as usual,
but notice that if the metric signature contains an odd number of negative eigenvalues q, then the sign of the components of this tensor differ from the standard Levi-Civita symbol: [9]
where sgn(det[gab]) = (−1)q, is the usual Levi-Civita symbol discussed in the rest of this article, and we used the definition of the metric determinant in the derivation. More explicitly, when the tensor and basis orientation are chosen such that , we have that .
From this we can infer the identity,
where
is the generalized Kronecker delta.
In Minkowski space (the four-dimensional spacetime of special relativity), the covariant Levi-Civita tensor is
where the sign depends on the orientation of the basis. The contravariant Levi-Civita tensor is
The following are examples of the general identity above specialized to Minkowski space (with the negative sign arising from the odd number of negatives in the signature of the metric tensor in either sign convention):
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems published by mathematician Emmy Noether in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.
In mathematics, the cross product or vector product is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space, and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b, is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product.
In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: or with use of Iverson brackets: For example, because , whereas because .
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in physics applications that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916.
Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In mathematics and theoretical physics, a tensor is antisymmetric onan index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. The index subset must generally either be all covariant or all contravariant.
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.
In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.
In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is done through an orthogonal transformation.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.
In algebra, the Binet–Cauchy identity, named after Jacques Philippe Marie Binet and Augustin-Louis Cauchy, states that for every choice of real or complex numbers . Setting ai = ci and bj = dj, it gives Lagrange's identity, which is a stronger version of the Cauchy–Schwarz inequality for the Euclidean space . The Binet-Cauchy identity is a special case of the Cauchy–Binet formula for matrix determinants.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.
The calculus of moving surfaces (CMS) is an extension of the classical tensor calculus to deforming manifolds. Central to the CMS is the tensorial time derivative whose original definition was put forth by Jacques Hadamard. It plays the role analogous to that of the covariant derivative on differential manifolds in that it produces a tensor when applied to a tensor.
Ashtekar variables, which were a new canonical formalism of general relativity, raised new hopes for the canonical quantization of general relativity and eventually led to loop quantum gravity. Smolin and others independently discovered that there exists in fact a Lagrangian formulation of the theory by considering the self-dual formulation of the Tetradic Palatini action principle of general relativity. These proofs were given in terms of spinors. A purely tensorial proof of the new variables in terms of triads was given by Goldberg and in terms of tetrads by Henneaux et al.
In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of eleven-dimensional supergravity.
This article incorporates material from Levi-Civita permutation symbol on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.